Одна секция радиатора на сколько квадратов: Правильный расчет радиаторов отопления в доме
- Правильный расчет радиаторов отопления в доме
- Расчет секций алюминиевых радиаторов на квадратный метр
- Расчет количества секций радиаторов отопления на 1 кв.м
- Расчет количества секций биметаллического радиатора – сколько нужно ребер
- на сколько квадратов одна секция, сколько ватт на кв метр, как рассчитать количество, сколько обогревает, отапливает
- Как правильно самостоятельно рассчитать количество секций радиатора?
- Правила расчета количества секций биметаллических радиаторов
- Определение размеров парового котла | Котельная компания США
- БЫСТРАЯ ПРОВЕРКА РАДИАТОРА МОЖЕТ НАГРЕТЬ ХОЛОДНУЮ КОМНАТУ
- Как ухаживать за радиаторами
- Управление паровыми радиаторами — The New York Times
- 7 лучших маслонаполненных обогревателей, обзоры и руководство по покупке
- ToughSF: Все радиаторы
- Расчет размеров электрических обогревателей плинтуса
Правильный расчет радиаторов отопления в доме
В вопросе поддержания оптимальной температуры в доме главное место занимает радиатор.
Выбор просто поражает: биметаллические, алюминиевые, стальные самых разных размеров.
Важно правильно рассчитать мощность и выбрать радиатор, чтобы впоследствии не было ошибок, которые могут поставить под угрозу не только функционирование радиаторов, но и здоровье Вас и Ваших близких.
Нет ничего хуже, чем неправильно рассчитанная необходимая тепловая мощность в помещении. Зимой такая ошибка может стоить очень дорого.
Тепловой расчет радиаторов отопления подходит для биметаллических, алюминиевых, стальных и чугунных радиаторов. Специалисты выделяют три способа, каждый из которых основан на определенных показателях.
Готовимся к зиме – расчет количества секций радиаторов отопления.
Здесь существует три метода, которые базируются на общих принципах:
- стандартная величина мощности одной секции может варьироваться от 120 до 220 Вт, поэтому берется средняя величина
- для корректировки погрешностей в расчетах при покупке радиатора следует заложить 20% резерв
Теперь обратимся непосредственно к самим методам.
Метод первый – стандартный
Исходя из строительных правил, для качественного отопления одного квадратного метра требуется 100 ватт мощности радиатора. Займемся подсчетами.
Допустим, площадь помещения составляет 30 м², мощность одной секции возьмем равной 180 ватт, тогда 30*100/180 = 16,6. Округлим значение в большую сторону и получим, что для комнаты площадью в 30 квадратных метров необходимо 17 секций радиатора отопления.
Однако, если помещение является угловым, то полученное значение следует умножить на коэффициент 1,2. В таком случае, количество необходимых секций радиаторов будет равно 20
Метод второй – примерный
Данный метод отличается от предыдущего тем, что основан не только на площади помещения, но и на его высоте. Обратите внимание, что метод работает только для приборов средней и большой мощности.
При малой мощности (50 ватт и менее) подобные расчеты будут неэффективны ввиду слишком большой погрешности.
Итак, если принять во внимание, что средняя высота помещения равна 2,5 метра (стандартная высота потолков большинства квартир), то одна секция стандартного радиатора способна обогреть площадь в 1,8 м².
Расчет секций для комнаты в 30 «квадратов» будет следующим: 30/1,8=16. Снова округляем в большую сторону и получим, что для обогрева данной комнаты нужно 17 секций радиатора.
Метод третий – объемный
Как видно из названия, подсчеты в этом методе базируются на объеме комнаты.
Условно принимается, что для обогрева 5 кубических метров помещения нужна 1 секция мощностью 200 ватт. При длине в 6 м, ширине 5 и высоте 2,5 м формула для расчета будет следующей: (6*5*2,5)/5 =15. Следовательно, для комнаты с такими параметрами нужно 15 секций радиатора отопления мощностью 200 ватт каждая.
Если радиатор планируется расположить в глубокой открытой нише, то количество секций нужно увеличить на 5%.
В случае, если радиатор планируется полностью закрыть панелью, то увеличение следует сделать на 15%. В противном случае будет невозможно добиться оптимальной теплоотдачи.
Прочитайте статью и узнайте как построить схему водяного отопления частного дома.
Вот здесь – все про то как выбрать радиатор отопления
Альтернативный метод расчета мощности радиаторов отопления
Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.
Можно рассчитать мощность, необходимую для обогрева помещения и сопоставить ее с предполагаемой мощностью радиаторов отопления.
Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:
30 х 2,5 = 75 куб.м.
Теперь нужно определиться с климатом.
Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.
Для определения необходимой мощности умножаем объем помещения на норматив:
75 х 41 = 3075 Вт
Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:
3100 х 1,2 = 3720 Вт.
Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.
Каждый специалист знает, что существует несколько способов подключения радиаторов отопления. Узнайте как выбрать оптимальный.
Как отопить дачу если нет магистрального газа? Есть очень простое решение – об этом можете прочитать по адресу: https://obogreem.net/otopitel-ny-e-pribory/obogrevateli/infrakrasny-e-obogrevateli-dlya-dachi.html.
Расчет количества радиаторов
Метод расчета представляет собой выдержки из предыдущих пунктов статьи.
После того, как Вы подсчитаете необходимую мощность для обогрева помещения и количество секций радиатора, Вы приходите в магазин.
Если число секций вышло внушительное (такое бывает в помещениях с большой площадью), то резонно будет приобрести не один, а несколько радиаторов.
Данная схема применима и к тем условиям, когда мощность одного радиатора ниже необходимой.
Но существует еще один быстрый способ посчитать количество радиаторов. Если в Вашей комнате стояли старые чугунные радиаторы с высотой около 60 см, и зимой Вы чувствовали в этом помещении себя комфортно, то посчитайте количество секций.
Полученную цифру умножьте на 150 Вт – это и будет необходимой мощностью новых радиаторов.
В случае выбора биметаллических или алюминиевых радиаторов, можете покупать их из расчета 1 к 1- на одно ребро чугунного радиатора 1 ребро биметаллического.
Разделение на «теплая» и «холодная» квартира давно уже пришло в нашу жизнь.
Многие люди сознательно не хотят заниматься выбором и установкой новых радиаторов, объясняя это тем, что «в этой квартире всегда будет холодно». Но это не так.
Правильный выбор радиаторов вкупе с грамотным расчетом необходимой мощности способен сделать тепло и уют за Вашими окнами даже в самую холодную зиму.
Расчет секций алюминиевых радиаторов на квадратный метр
Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
Кроме них:
- Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
Q = S х100 х k/P
В данном случае:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
Где:
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
Например:
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +35 = 1.5;
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
- неотапливаемого чердака – коэффициент 1. 0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 2.5 м = 1.0;
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Полезное видео
Расчет количества секций радиаторов отопления на 1 кв.м
При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.
Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.
Расчет мощности радиаторов отопления может осуществляться тремя способами:
Стандартный расчет радиаторов отопления
Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:
С*100/Р=К, где
К— мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;
С— площадь помещения. Она равна произведению длины комнаты на ее ширину.
К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.
Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:
14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1. 2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.
Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.
Примерный расчет — сколько секций батареи на квадратный метр
Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.
Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:
14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.
Объемный или для нестандартных помещений
Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:
К=О*41, где:
К- необходимое количество секций радиатора,
О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.
Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:
3.0*4.0*3.5=42 метра кубических.
Расчитывается общая потребность в тепловой энергии данной комнаты:
42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10. 8, округляется до 11 секций.
Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.
Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.
Расчет количества секций биметаллического радиатора – сколько нужно ребер
Секрет популярности биметаллических радиаторов заключается в том, что по своей эффективности они не уступают традиционным чугунным батареям, однако при этом они имеют лучшие технико-эксплуатационные характеристики. К числу неоспоримых преимуществ относят:
- Высокий коэффициент теплоотдачи.
- Продолжительный срок службы, составляющий более 20 лет.
- Стильный и аккуратный внешний вид.
- Сравнительно небольшой вес, что существенно упрощает установочные работы.
- Наличие ниппелей, обеспечивающих возможность соединять секции, благодаря чему радиатор можно «нарастить».
Отметим, что зачастую необходимость в наращивании возникает, например, если при покупке был выбран прибор с неподходящим числом секций или по другим причинам. Чтобы изначально не ошибиться в подборе оптимальной модели, нужно знать, как выполнить расчет радиаторов отопления биметаллических, то есть оптимального числа секций. Кстати, сделать это можно самостоятельно, не прибегая к помощи профессионалов, при этом для расчета используются различные методики.
Почему нужно делать расчет, а не выбирать радиатор «на глаз»?
Обратите внимание: зачастую при покупке биметаллического прибора некоторые ориентируются на то, сколько секций было в прежде эксплуатируемых чугунных батареях. Такой подход в корне неверный.
Теплоотдача секции биметаллического прибора значительно выше, чем чугунного, поэтому количество ребер будет разным. А в частности, тепловая мощность одной секции чугунного радиатора составляет в среднем от 80 до 160 Ватт, а для биметаллического этот параметр соответствует примерно 200 Ватт.
Некоторые решают выполнить расчет количества секций «на глаз», например, если в чугунной батарее их было 9, то выбрать биметаллический радиатор с 6 секциями. Но в конечном итоге вероятность «угадать» крайне мала, и получается, что после установки нового прибора в помещении либо очень холодно, либо наоборот — слишком жарко. Именно поэтому правильнее изначально сделать точный расчет биметаллических радиаторов. К счастью, современные производители выпускают устройства с различным числом секций и не составляет сложности подобрать модель для помещения фактически с любыми планировочными особенностями.
Выполнить корректный расчет количества биметаллических радиаторов и секций не так уж сложно, но для этого нужно знать технические характеристики помещения, в котором планируется установка. А в частности, потребуются следующие значения: фактическая площадь помещения и объем отапливаемой комнаты. Далее выбираем, как именно (т.е. по какой методике) будет удобнее всего рассчитать количество секций биметаллического радиатора.
Определение по площади комнаты
Проще всего выполнить расчет биметаллических радиаторов отопления по площади, но в этом случае нужно, чтобы высота потолка была около 2,5 метров. В соответствии со СНиП, нагрузка на один метр составляет 100 Ватт — такой норматив установлен для средней полосы РФ. Отметим, что в регионах Крайнего Севера это значение гораздо больше.
В «стандартном» случае необходимо умножить площадь комнаты на 100, в результате чего мы получим мощность нормативного потребления тепла. После делим полученное значение на паспортную теплоотдачу одной секции биметаллического радиатора (она указывается в техническом описании или паспорте на прибор) — итоговая цифра показывает, сколько секций биметаллического радиатора нужно.
Расчет по объему
Расчет оптимальных параметров биметаллических радиаторов для помещений с высотой потолков более 2,6 метра осуществляется по объему. В соответствии с установленными нормами, для отопления одного кубического метра необходимо:
- 41 Ватт, если помещение находится в многоквартирном панельном доме.
- 34 Ватта, если помещение находится в кирпичном доме.
Определение нужного количества секций биметаллического радиатора выполняется по следующей схеме:
- Определяем расчетный объем в кубических метрах. Для этого умножаем высоту комнаты на ее площадь.
- Умножаем полученное значение на норматив теплопотребления (то есть на 34 или 41 Ватт), так мы получим мощность нормативного потребления тепла.
- Итоговое значение делим на паспортную теплоотдачу одного ребра биметаллического радиатора (берем значение из технического описания или паспорта на изделие) — так удалось узнать, сколько секций нужно.
Альтернативные методы расчета
Существует и еще одна методика расчета секций биметаллических радиаторов, которая очень проста, но дает лишь приблизительный результат. Чаще всего ее используют сантехники, когда им предстоит выполнить расчет множества приборов, имеющих высокую суммарную мощность.
Считается, что в квартире со стандартной высотой потолков, расположенной в средней полосе России, одна секция биметаллического радиатора, имеющая среднюю мощность, способна обеспечивать теплом 1,8 кв. метров площади. Таким образом, для определения нужного количества секций биметаллического радиатора остается лишь поделить площадь комнаты на 1,8.
Наиболее точная методика расчета числа секций с учетом поправочных коэффициентов
Конечно, такая методика расчета привлекает своей простотой, но рассчитывать на ее точность не приходится. Если вы хотите получить более достоверные значения, то придется учесть множество сторонних факторов, в том числе касающихся:
- Состояния остекления.
- Количества наружных стен.
- Качества теплоизоляции наружных стен.
- Климатических характеристик региона и проч.
Рекомендуем, если вы покупаете радиаторы биметаллические, расчет секций выполнить именно по формуле с поправочными коэффициентами, так как полученное значение будет максимально точным. Итоговая формула в данном случае выглядит следующим образом: нормативное значение тепла (то есть 100 Ватт/кв.м) необходимо умножить на все поправочные коэффициенты, определяющие особенности теплопотребления комнаты.
Описание и расшифровка поправочных коэффициентов
Поправочные коэффициенты:
- К1 — он учитывает конструкцию остекления в помещении. Для двойных деревянных рам этот коэффициент соответствует 1,27, для двойных пластиковых стеклопакетов — 1,0, а для тройных — 0,85.
- К2 — определяет качество утепления стен. Если стены дома созданы из кирпича, то этот коэффициент принимают за 1, во всех остальных случаях — 1,27. Кстати, наличие дополнительной теплоизоляции стен дает возможность использовать понижающий коэффициент 0,85.
- К3 — отражает отношение площади окон к полу. В числителе ставится процент остекления, присутствующий в помещении, а в знаменателе — коэффициент теплопотребления (то есть 50/0,8; 40/0,9; 30/1,0; 20/1,1; 10/1,2).
- K4 — коэффициент, учитывающий среднюю температуру в самую холодную неделю года. Если это значение соответствует -35 градусам по Цельсию, то К4=1,5, при -25 — 1,3, при -20 — 1,1, при -15 — 0,9, а при -10 — 0,7.
- К5 — учитывает число наружных стен. При наличии одной наружной стены в помещении он соответствует 1,1, а каждая последующая увеличивает это значение на 0,1.
- К6 — необходим для учета влияния теплового режима помещения, находящегося на этаж выше. Если там расположен холодный чердак, то К6 принимают на 1, если отапливаемый, то за 0,6, если жилое помещение — 0,8.
- К7 — коэффициент, с помощью которого выражается зависимость от высоты потолков. При стандартном значении 2,5 метра он принимается равным 1. Повышение этого значения на 0,5 метра делает К7 больше на 0,05, при 3 метрах — 1,05, при 3,5 метрах — 1,1, при 4,0 метрах — 1,15, а при 4,5 метрах — 1,2.
Как показывает практика, очень большое значение оказывает, какое именно помещение расположено над комнатой, где планируется установка биметаллических радиаторов, а также существенную «лепту» вносит количество наружных стен квартиры. Если сделать расчет без учета этих факторов, то с большой долей вероятности в помещении будет слишком жарко, или наоборот — со временем придется наращивать радиатор. Намного правильнее и удобнее сразу сделать точный расчет и выполнить установку биметаллического радиатора отопления с идеально подходящими техническими характеристиками.
Пример
Рассмотрим пример расчета и определим, сколько секций биметаллического радиатора нужно для полноценного обогрева помещения, находящегося в доме из кирпича, на последнем этаже здания с неотапливаемым чердаком. При этом в комнате установлены двойные стеклопакеты, а отношение остекления к площади пола соответствует 30%. Отметим, что квартира, где находится комната — угловая, площадь помещения — 18 квадратных метров. Сам многоквартирный дом расположен в средней полосе РФ, где в самую холодную неделю в году средняя температура составляет -10 градусов по Цельсию.
При таких вводных данных формула расчета секций биметаллического радиатора будет выглядеть следующим образом:
- 100 Ватт/метр*1,0*1,0*1,0*0,7*1,2*1,0*=84 Вт/кв.м
- Полученное значение необходимо умножить на площадь комнаты: 18*84=1512 Ватт.
- Остается лишь разделить 1512 Ватт на тепловую мощность одной секции, мы примем это значение за 170 Вт (на практике нужно уточнить в паспорте или описании на изделие). В итоге получаем 8,89, то есть идеальное количество секций биметаллического радиатора в представленном примере — 9.
Использование онлайн-калькулятора для расчета: в чем преимущества?
Если времени или желания выполнять самостоятельные расчеты нет, то можно воспользоваться бесплатными онлайн-программами. Для этого необходимо найти специальный калькулятор для расчета секций биметаллических радиаторов. В таких программах, помимо обозначенных выше коэффициентов, также требуется указать информацию, которая касается:
- Особенностей установки радиатора. Например, возможен монтаж устройства открыто на стене, под подоконником, в стеновой нише.
- Наличия или отсутствия декоративного кожуха.
- Схемы подключения радиатора.
- Расположения дома (а точнее — на какую сторону света выходят внешние стены дома).
Использование дополнительных данных позволяет выполнить наиболее точный расчет. Если у вас появились вопросы по способам определения необходимого количества секций биметаллического радиатора или вы хотите доверить проведение работ по расчету профессионалам, достаточно связаться с менеджером «САНТЕХПРОМ» по телефону +7 (495) 730-70-80. Представитель компании предоставит необходимые консультации и поможет точно узнать, сколько секций биметаллического радиатора нужно для вашей комнаты.
на сколько квадратов одна секция, сколько ватт на кв метр, как рассчитать количество, сколько обогревает, отапливает
Содержание:
Несмотря на появляющиеся время от времени инновационные разработки обогревателей для жилья, самой надежной и эффективной продолжает оставаться система отопления с радиаторами. Перед ее установкой необходимо точно рассчитать количество радиаторных секций, чтобы избежать недостатка или переизбытка выделяемого тепла.
Основные критерии при расчете отопления
Наряду с общими показателями, при расчете радиаторов отопления на квадратный метр, необходимо взять во внимание ряд факторов, непосредственно влияющих на количество теплопотерь:
- Число наружных стен. Комната с двумя наружными стенами и одним окном потребует увеличения мощности обогревающих приборов на 20%. В помещениях с двумя окнами количество теплопотерь увеличивается до 30%. Наиболее холодными считаются угловые помещения, где необходимо значительное увеличение энергоресурсов на отопление.
- Ориентация по сторонам света. Помещения с северным или северо-восточном направлением окон по ходу расчета количества батарей на кв метр требуют добавления к полученной цифре еще 10%. Как показывает практика, потери тепла при таком расположении наиболее значительны.
- Положение радиаторов. При самостоятельной организации отопительного контура необходимо вооружиться некоторыми принципами. Частично закрытые подоконниками батареи уменьшают свою эффективность на 3-4%. Если для установки обогревателей используются ниши, это влечет за собой увеличение потерь примерно до 7%.
- Использование экрана. Закрывать батареи экранами – не лучшая идея: подобные действия не одобряются производителями сантехнического оборудования. Если же другого выхода нет, и экран все-таки применяется, следует учесть, что частично закрытые конструкции снижают производительность радиаторов на 7%. Полностью закрытый экран уменьшает эффективность батареи почти на 25%.
Кроме того, в учет необходимо взять число отделанных утеплителем стен, качество стеклопакетов, надежность простенков и т.п. Для того, чтобы из-за недочета количества секций радиатора на квадратный метр в итоге не получить малоэффективную систему, к итоговому результату всегда рекомендуется добавлять 15-20% мощности.
Влияние на результат материала изготовления радиатора
В настоящее время наибольшей популярностью пользуются следующие разновидности радиаторов:
- Чугунные. Чаще всего используется чугунная батарея марки МС-140 с уровнем теплоотдачи 180 Вт. Этот показатель справедлив лишь при использовании теплоносителя с максимальной температурой. На практике такое бывает редко, поэтому фактическая мощность прибора – 60-120 Вт. Именно эти цифры рекомендуется использовать при проведении расчете ватт на квадратный метр отопления.
- Стальные. Имеют почти такую же площадь, что и чугунные. Это же касается и параметров, точные значение которых указываются в сопроводительной документации. При этом масса стальных изделий меньше, что делает их транспортировку и монтаж более простым.
- Алюминиевые. Дать общий ответ, сколько отапливает одна секция алюминиевого радиатора проблематично, так как подобные изделия представлены в продаже в большом количестве модификаций. Поэтому в каждом конкретном случае расчета количества секций алюминиевых радиаторов необходимо руководствоваться паспортными данными модели. В общем считается, что средним показателем, сколько обогревает одна секция алюминиевого радиатора, является 100 Вт/м2. Если заявленная мощность прибора меньше, то, скорее всего, речь идет о подделке. Также следует сказать, что уровень теплоотдачи алюминия более высокий, чем у чугуна и стали. Это также следует взять во внимание перед тем, как рассчитать количество секций алюминиевых радиаторов отопления.
- Биметаллические. Эти изделия, совмещающие в себе высокую теплоотдачу алюминия и прочностные качества стали, в настоящее время пользуются наибольшей популярностью у покупателей (уровень мощности одной секции биметаллического радиатора идентичен тому, на сколько квадратов одна секция алюминиевой батареи). Благодаря хорошей теплоотдаче, разрешается несколько сокращать количество секций при установке. Правильный расчет биметаллических радиаторов позволяет сэкономить финансы даже несмотря на то, что биметаллические радиаторы считаются наиболее дорогими.
Максимальные значения теплоотдачи приборов не рекомендуется использовать при расчете секций алюминиевых радиаторов на квадратный метр – теплоноситель в системе обычно никогда не достигает крайних значений. Более надежный путь – использовать минимальные значения, что позволит гарантированно избежать ошибок. Обустроенная на основе расчета секций алюминиевых радиаторов отопительная система будет обеспечивать комфорт в жилище даже при сильных морозах.
Способы расчета количества секций радиатора на квадратный метр
Для подсчета числа секций батареи на 1 м2 жилища обычно применяется один из нижеперечисленных методов:
- Чтобы узнать, сколько секций батарей нужно на квадратный метр, необходимо выполнить некоторые расчеты. Как гласят строительные нормы, 100 Вт мощности нагревательного прибора должно приходиться на 1 м2 хорошо утепленного дома. На основе этого и проводятся соответствующие вычисления. К примеру, комната на 15 м2 нуждается в 1500 Вт тепловой мощности радиатора. Для чугунных радиаторов за основу берется параметр в 100 Вт: как уже указывалось, получение максимального значения в 180 Вт на практике добиться практически нереально. В итоге получается оптимальное количество ребер – 15 шт.
- Помещения нестандартной высоты адекватней рассчитывать по объему. В качестве примера можно взять уже знакомую комнату площадью в 15 м2 и высотой 3 метра: ее объем составит 45 м3. Для одного квадратного метра, в зависимости от особенностей помещения, необходимо 30 — 40 Вт. В панельном доме этот показатель берется, как 40: дальнейший простой расчет показывает, что для эффективного обогрева комнаты необходимо 1800 Вт тепловой мощности.
- Помещения сложной конфигурации рассчитываются формулами с большим числом коэффициентов. Чтобы избежать этой довольно громоздкой процедуры, рекомендуется воспользоваться услугами онлайн-калькулятора. Введя в специальные графы нужные данные, можно за считанные секунды получить необходимый результат. Кроме удобства, такой способ убережет от ошибок в подсчетах, почти неизбежных при самостоятельной реализации.
После того, как наиболее удобный способ расчета выбран, и нужное значение получено, учета потребуют и все остальные факторы, упомянутые выше. Если они имеются, необходимо увеличить итоговое число на указанный процент теплопотерь. В итоге они полностью компенсируются увеличением мощности отопительной системы.
Как правильно самостоятельно рассчитать количество секций радиатора?
Как посчитать количество секций радиатора отопления на помещение? Вы решили установить батареи в новом доме, или заменить старые на новые, или ставите для дизайна приборы другой модификации, и Вам надо подсчитать число его сегментов для комнаты. Исходя из этих расчетов можно подсчитать, сколько устройств Вам потребуется на все помещение.
Теперь о некоторых нюансах. Если Вы давно проживаете в квартире и знаете как у Вас топят:
- если трубы горячие и температура батарей нормальная, просто они малые по мощности или дизайн не устраивает, можете считать точное количество секций по площади;
- если же у Вас прохладно, то посчитайте точно и добавьте на пару больше.
Для начала почитайте, как выбрать подобный прибор, а я буду описывать его биметаллическую разновидность.
Порядок расчетов
Секция биметаллических радиаторов в среднем рассчитана на обогрев 1,5-2 квадратных метра, точнее надо уточнять у продавца, я расскажу на примере. Допустим, у Вас комната 20 кв. м и вертикальная система отопления, в ней находится 2 стояка отопления. Если сегмент устройства, которое Вы хотите установить, рассчитан на обогрев 1,5 квадрата, то Вам потребуется 14 штук (20 делим на 1,5, получается 13,33). Лучше поставить по семь на каждый стояк, или, чтобы было с запасом, поставьте на одном приборе 8, а на другом 7. Лучший вариант, если стояки железные, заменить батарею сваркой. Если у Вас проходит один стояк и Вы будете ставить устройство на 15 секций, то стандартное подключение Вам не подойдет, нужно подключать по диагонали. А вообще, нужно выбрать, чтобы получилась правильная установка, так как, если поставите большое число сегментов, то столкнетесь с проблемой, что не все они греют, к тому же может притормозиться движение теплоносителя по стояку — медленнее пойдет циркуляция, и это скажется на всех квартирах.
Если же у Вас двухтрубная горизонтальная система, то лучше устанавливайте 2 батареи и подключение делайте по диагонали.
Тепла Вам зимой!!!
Правила расчета количества секций биметаллических радиаторов
Чаще всего биметаллические радиаторы владельцы приобретают для замены чугунных батарей, которые по той или иной причине вышли из строя или стали плохо обогревать помещение. Чтобы эта модель радиаторов хорошо справлялась со своей задачей, необходимо ознакомиться с правилами расчета количества секций на все помещение.
Необходимые данные для подсчета
Самим правильным решением станет обращение к опытным специалистам. Профессионалы могут рассчитать количество биметаллических радиаторов отопления довольно точно и эффективно. Такой расчет поможет определить, сколько секций понадобится не только для одной комнаты, но и для всего помещения, а также для любого типа объекта.
Все профессионалы учитывают следующие данные для подсчета количества батарей:
- из какого материала было построено здание;
- какая толщина стен в комнатах;
- тип окон, монтаж которых был произведен в данном помещении;
- в каких климатических условиях находится здание;
- есть ли в комнате, находящейся над помещением, где ставятся радиаторы, какое-нибудь отопление;
- сколько в комнате «холодных» стен;
- какая площадь рассчитываемой комнаты;
- какая высота стен.
Все эти данные позволяют сделать расчет наиболее точным для установки биметаллических батарей.
Коэффициент теплопотерь
Чтобы сделать расчет правильно, необходимо для начала посчитать, какие будут тепловые потери, а затем высчитать их коэффициент. Для точных данных нужно учитывать одно неизвестное, то есть стены. Это касается, прежде всего, угловых комнат. Например, в помещении представлены следующие параметры: высота – два с половиной метра, ширина – три метра, длина – шесть метров.
Внешняя сторона здесь будет считаться объектом расчета, который можно произвести по такой формуле: Ф = a*х, где:
- Ф является площадью стены;
- а – ее длиной;
- х – ее высотой.
Расчет ведется в метрах. По этим подсчетам площадь стены будет равна семи с половиной квадратным метрам. После этого необходимо рассчитать теплопотери по формуле Р = F*K.
Также умножить на разницу температур в помещении и на улице, где:
- Р – это площадь теплопотерь;
- F является площадью стены в метрах квадратных;
- К – это коэффициент теплопроводности.
Для правильного расчета нужно учитывать температуру. Если на улице температура составляет примерно двадцать один градус, а в комнате восемнадцать градусов, то для расчета данного помещения нужно добавить еще два градуса. К полученной цифре нужно добавить Р окон и Р двери. Полученный результат нужно поделить на число, обозначающее тепловую мощность одной секции. В результате простых вычислений и получится узнать, сколько же батарей необходимо для обогрева одной комнаты.
Однако все эти расчеты правильны исключительно для комнат, которые имеют средние показатели утепления. Как известно, одинаковых помещений не бывает, поэтому для точного расчета необходимо обязательно учесть коэффициенты поправки. Их нужно умножить на результат, полученный при помощи вычисления по формуле. Поправки коэффициента для угловых комнат составляют 1,3, а для помещений, находящихся в очень холодных местах – 1,6, для чердаков – 1,5.
Мощность батареи
Чтобы определить мощность одного радиатора, необходимо рассчитать какое количество киловатт тепла понадобится от установленной системы отопления. Мощность, которая нужна для обогревания каждого квадратного метра, составляет 100 ватт. Полученное число умножается на количество квадратных метров комнаты. Затем цифра делится на мощность каждой отдельно взятой секции современного радиатора. Некоторые модели батарей состоят из двух секций и больше. Делая расчет, нужно выбирать радиатор, который имеет приближенное к идеалу число секций. Но все же, оно должно быть немного больше расчетного.
Это делается для того, чтобы сделать помещение теплее и не мерзнуть в холодные дни.
Производители биметаллических радиаторов указывают их мощность для некоторых данных системы отопления. Поэтому покупая любую модель, необходимо учесть тепловой напор, который характеризует, как нагревается теплоноситель, а также как он обогревает систему отопления. В технической документации часто указывают мощность одной секции для напора тепла в шестьдесят градусов. Это соответствует температуре воды в радиаторе в девяносто градусов. В тех домах, где помещения отапливают чугунными батареями, это оправданно, но для новостроек, где сделано все более современно, температура воды в радиаторе вполне может быть ниже. Напор тепла в таких системах отопления может составлять до пятидесяти градусов.
Расчет тут произвести тоже нетрудно. Нужно мощность радиатора поделить на цифру, обозначающую тепловой напор. Число делится на цифру, указанную в документах. При этом эффективная мощность батарей станет немного меньше.
Именно ее необходимо ставить во все формулы.
Популярные методы
Для вычета нужного количества секций в устанавливаемом радиаторе может быть использована не одна формула, а несколько. Поэтому стоит оценить все варианты и выбрать тот, что подойдет для получения более точных данных. Для этого нужно знать, что по нормам СНиП на 1 м², одна биметаллическая секция может обогреть один метр и восемьдесят сантиметров площади. Чтобы посчитать какое количество секций понадобиться на 16 м², нужно разделить эту цифру на 1,8 квадратного метра. В итоге получается девять секций. Однако этот метод довольно примитивный и для более точного определения необходимо учитывать все вышесказанные данные.
Существует еще один простой метод для самостоятельного вычисления. Например, если взять небольшую комнату в 12 м², то очень сильные батареи здесь ни к чему. Можно взять, для примера, теплоотдачу всего одной секции в двести ватт. Тогда по формуле можно легко вычислить их количество, требуемое для выбранной комнаты. Чтобы получить нужную цифру, нужно 12 – это количество квадратов, умножить на 100, мощность на метр квадратный и поделить на 200 ватт. Это, как можно понять, является значением теплоотдачи на одну секцию. В результате вычислений получится число шесть, то есть именно столько секций понадобится для отопления помещения в двенадцать квадратов.
Можно рассмотреть еще один вариант для квартиры с квадратурой в 20 м². Допустим, что мощность секции купленного радиатора – сто восемьдесят ватт. Тогда, подставляя все имеющиеся значения в формулу, получится такой результат: 20 нужно умножить на 100 и разделить на 180 будет равно 11, а значит, такое количество секций понадобится для отопления данного помещения. Однако такие результаты будут действительно соответствовать тем помещениям, где потолки не выше трех метров, а климатические условия не очень жесткие. А также не были учтены и окна, то есть их количество, поэтому к конечному результату необходимо добавить еще несколько секций, их число будет зависеть от количества окон. То есть в комнате можно установить два радиатора, в которых будет по шесть секций. При этом расчете была добавлена еще одна секция с учетом окон и дверей.
По объему
Чтобы сделать вычисление более точными, нужно провести расчет по объему, то есть учесть три измерения в выбранной отапливаемой комнате. Все расчеты делаются практически одинаково, только в основе находятся данные мощности, рассчитанной на один метр кубический, которые равны сорок одному ватту. Можно попробовать рассчитать количество секций биметаллической батареи для помещения с такой площадью, как в варианте, рассмотренном выше, и сопоставить результаты. В этом случае высота потолков будет равна двум метрам семидесяти сантиметрам, а квадратура помещения будет двенадцать квадратных метров. Тогда нужно умножить три на четыре, а потом на два и семь.
Результат будет таким: тридцать два и четыре метра кубических. Его надо умножить на сорок один и получится тысяча триста двадцать восемь и четыре ватта. Такая мощность радиатора будет идеально подходящей для отопления этой комнаты. Затем этот результат нужно разделить на двести, то есть число ватт. Результат будет равен шести целым шестидесяти четырем сотым, а значит, понадобится радиатор на семь секций. Как видно, результат расчета по объему намного точнее. В итоге не нужно будет даже учитывать число окон и дверей.
А также можно сравнить и результаты вычисления в помещении с двадцатью квадратными метрами. Для этого необходимо умножить двадцать на два и семь, получится пятьдесят четыре метра кубических – это объем помещения. Далее, нужно умножить на сорок один и в результате получится две тысячи четыреста четырнадцать ватт. Если батарея будет иметь мощность в двести ватт, то на эту цифру нужно разделить на полученный результат. В итоге выйдет двенадцать и семь, а значит для данной комнаты необходимо такое количество секций, как и в предыдущем расчете, но этот вариант намного точнее.
По площади
Если рассматривать вариант по площади, то он будет не так точен, как по объему. Для этого нужно перемножить ширину и длину, а этот результат умножить на мощность одной секции, то есть на сто ватт. Необходимо разделить на число равное теплоотдачи одной секции, которое может быть разным. Для примеров можно рассмотреть комнату в 18 м². Теплоотдачу секции батареи можно взять в двести ватт. Тогда нужно три умножить на шесть и еще раз на сто, а затем разделить на двести. В итоге получится девять секций. Такой результат подойдет для квартир, находящихся на средней полосе страны, то есть там, где температура зимой не будет превышать нормы температуры.
Можно сказать, что сделать расчет можно любым из рассмотренных способов. Однако самым точным и не таким долгим будет считаться вычисление по объему. Ведь в остальных случаях придется учитывать еще и отдельно другие параметры. Кроме того, результат далеко не всегда получается таким точным, как того хотелось бы. Для того чтобы с комфортом зимовать, важно правильно рассчитать количество секций биметаллических радиаторов так, чтобы даже в сильные холода владельцы квартир совсем не мерзли, а чувствовали себя уютно и комфортно.
Для этого достаточно следовать предложенным выше инструкциям по расчету и быть максимально внимательным во время работы.
О том, как выполнить установку биометаллических радиаторов своими руками, смотрите в видео ниже.
Определение размеров парового котла | Котельная компания США
Рон Бек, Котельная компания США
В прошлом месяце мы обсуждали определение размеров водогрейного котла с расчетом теплопотерь. В отличие от водогрейного котла, размер парового котла определяется путем определения квадратного фута излучения, подключенного к паровой системе. Как только это будет определено, вы можете точно выбрать котел, который достаточно большой, чтобы нагревать подключенную нагрузку (излучение). Достаточно пара только для заполнения системы; больше может привести к короткому циклу.Обычно вы не добавляете никакой емкости для системного трубопровода, но если в безусловном пространстве есть горизонтальный основной трубопровод, вы можете позвонить нам для получения предложений.
Для покрытия потерь в трубопроводах и того, что мы называем коэффициентом поглощения, котел производит примерно на 33% больше пара, чем указано в брошюрах всех производителей. Площадь пара в брошюре указана только для подключенной нагрузки. Не устанавливайте бойлер большего размера, чем требует система.
Чтобы рассчитать квадратный фут излучения, сначала определите, является ли излучатель колонным или трубчатым.Затем измерьте высоту радиатора от пола до верха радиатора, посчитайте количество колонн или трубок и подсчитайте количество секций, составляющих длину. Используя эту высоту и количество трубок или столбцов, вы воспользуетесь таблицей радиаторов (ниже или в программе «Помощник по отоплению»), чтобы определить квадратный фут пара на секцию каждого радиатора. Затем умножьте это число на количество секций, чтобы получить общий объем радиатора.
Радиатор на фото колонного типа.Предположим, что это 22 дюйма в высоту. Глядя на диаграмму, мы вводим строку для радиатора высотой 22 дюйма и столбец для радиатора с тремя колоннами. Число на пересечении строки и столбца — три, что является множителем для определения квадратного фута пара, необходимого для одной секции. Умножьте это число на количество секций, составляющих длину. Этот радиатор будет площадью 9 квадратных футов пара. Когда все радиаторы будут рассчитаны, сложите объем всего излучения вместе, и это будет общий квадратный фут пара, необходимый для обогрева дома.Затем сравните это с буклетом цветов парового котла и выберите котел, который соответствует требуемой нагрузке.
Важное примечание относительно размеров котла — все подводящие трубопроводы в подвале должны быть изолированы с помощью изоляции труб толщиной не менее 1 дюйма. Лучшим выбором будет изоляция трубы толщиной 1-1 / 2 дюйма или 2 дюйма. Неизолированный паропровод приравнивается к радиатору и должен быть рассчитан и добавлен к вышеприведенному расчету. При эксплуатации парового котла без изоляции на главных паропроводах в подвале вам понадобится котел большего размера, что повлечет за собой более высокие эксплуатационные расходы.Но это также может вызвать эксплуатационные проблемы, такие как затопление котлов или гидравлический удар, о которых мы поговорим в будущем.
БЫСТРАЯ ПРОВЕРКА РАДИАТОРА МОЖЕТ НАГРЕТЬ ХОЛОДНУЮ КОМНАТУ
Это происходит каждый год.
Жара идет уже пару недель, а там еще одна комната или один этаж, там холодно.
Так в чем проблема? Это главное? Это дорого? Вам нужен сантехник?
Что ж, проблема довольно простая и может быть недорого, но вам может понадобиться сантехник.
Прежде чем звонить кому-либо, убедитесь, что клапаны радиатора (в том месте, где трубы входят в радиатор) открыты, чтобы внутрь могла попасть вода. Тогда, если все еще нет тепла, есть две основные вещи, которые могут быть неправильными.
* В радиаторе может быть воздух, который препятствует циркуляции воды. Это наиболее вероятно, если есть только один радиатор, который не нагревается, или если есть радиатор, который только наполовину нагревается.
Если это так, из радиатора следует «стравить воздух», то есть открыть клапан на дальнем конце для выхода воздуха.В большинстве хозяйственных магазинов есть «ключи», которые упрощают эту работу. Медленно поверните ключ, не более чем на один оборот, и поставьте чашку под клапан — вы не хотите, чтобы выходило много воды, только крошечный кусочек
, который указывает на отсутствие воздуха.
* Если задействовано более одного радиатора или если стравливание не помогает, возможно, в системе недостаточно воды, поэтому давление слишком низкое для обеспечения циркуляции воды ко всем радиаторам.
«Недостаток давления проявляется в первую очередь на верхних этажах», — говорит Дэвид Калвер из компании Bryan Plumbing and Heating в Парквилле.Он предлагает проверить манометр на котле. Это небольшое круглое или квадратное устройство, обычно сверху или спереди.
«Верхняя часть манометра обычно предназначена для измерения давления, а нижняя часть — для температуры котла», — поясняет г-н Калвер. Найдите значение в фунтах на квадратный дюйм (фунт / кв. Дюйм). «Фунт давления поднимет столб воды примерно на 2,4 фута», — говорит Калвер.
Что должен показывать прибор? Он приводит пример. «Если давление в котле составляет 10 фунтов, он поднимет воду на 24 фута.В типичном двухэтажном доме с подвалом оставьте 8 футов для подвала, 8 футов для первого этажа и примерно 4 фута на втором этаже, чтобы добраться до вершины самого высокого радиатора. Восемь плюс восемь плюс 4 — это 20 футов, поэтому 10 фунтов давления будет достаточно ».
Если у вас более высокие потолки или нет подвала, скорректируйте значения соответствующим образом.
Если показания манометра в фунтах на квадратный дюйм кажутся слишком низкими для высоты, на которую должна идти вода, системе может потребоваться больше воды. Думайте об этом как о забивании большего количества воды в системе; это повысит давление.
И, если это ваш первый опыт работы с системой горячего водоснабжения, вы можете вызвать сантехника — хотя бы для того, чтобы показать вам веревки, чтобы в следующий раз вы могли продолжить работу самостоятельно.
В основном вот что нужно для регулировки давления.
Сначала система должна быть холодной или, по крайней мере, не работать. Затем определите, есть ли в системе редукционный клапан.
«Чтобы найти это, — говорит г-н Калвер, — нужно проследить за линией холодной воды, ведущей к котлу.Непосредственно перед тем, как он войдет в котел, будет запорный клапан, а сразу за запорным клапаном находится редукционный клапан. «Вероятно, он красный или зеленый, — говорит он, и его цель — снизить« уличное давление ». вода по мере того, как она поступает в птичник, с обычных 45-60 фунтов на квадратный дюйм до 12 фунтов.
Большинство редукционных клапанов, объясняет он, настроены на заводе так, чтобы допускать 12 фунтов на квадратный дюйм или поднимать воду на 28,8 футов. достаточно для трехэтажного дома
У некоторых котлов есть кнопка «быстрого наполнения» на клапане, которая позволяет быстро доливать воду при уличном давлении.У других есть установочный винт на клапане, который следует поворачивать по часовой стрелке для увеличения давления и против часовой стрелки для его уменьшения. Любую регулировку необходимо производить постепенно, чтобы система могла приспособиться.
В некоторых системах нет редукционного клапана; вода добавляется открытием крана в магистрали с улицы.
Обычно котлы защищены предохранительным клапаном, заводская настройка которого составляет 30 фунтов на кв. Дюйм. Если давление превысит это значение, клапан «дует», и «лишняя» вода выльется наружу.В некоторых старых домах предохранительный клапан может входить прямо в бак для стирки или слив. (Если вы восстанавливаетесь, будьте осторожны, не снимайте и не закрывайте такую трубу, — говорит г-н Калвер.) В любом случае, вы не хотите стоять рядом с этим предметом, когда он уходит.
«Известно, что манометры котла неправильные, — говорит г-н Калвер. Он рекомендует никогда не повышать давление выше 25 фунтов на квадратный дюйм.
Next: Котлы разные.
Г-н Джонсон — менеджер по строительству Жилищной службы по соседству в Балтиморе.Г-жа Мензи — главный редактор журнала The Sun.
Если у вас есть вопросы, комментарии, советы или опыт, которыми вы можете поделиться по поводу работы над домами, напишите нам по адресу HOME WORK, The Sun, 501 N. Calvert St., Baltimore, Md. 21278. Вопросы, представляющие общий интерес, будут ответил в колонке; комментарии, советы и впечатления будут публиковаться в отдельных столбцах.
Как ухаживать за радиаторами
Перед тем, как приступить к техническому обслуживанию или ремонту старых радиаторов, важно знать, есть ли у вас паровые или водяные радиаторы.Самый простой способ определить это — посмотреть на количество труб, идущих от вашего радиатора: если труба только одна, значит, это паровая система. Две трубы могут указывать либо на пар, либо на горячую воду, при этом конденсированная или охлажденная вода возвращается в котел по второй трубе.
Радиатор горячей воды в Рутмере, доме изящного искусства 1910 года в Элкхарте, штат Индиана, демонстрирует типичное нижнее соединение трубы.
Джозеф Хиллиард
Джозеф Хиллиард
Радиаторы горячей воды 101
В радиаторах горячей воды редукционный клапан между городской водой и вашей системой водяного отопления постоянно поддерживает ее наполнение.В большинстве двухэтажных домов требуется давление 12 фунтов на квадратный дюйм, и это заводская настройка клапана. Если в вашем старом доме три этажа и на верхнем этаже установлены радиаторы, вам может потребоваться отрегулировать клапан для подачи воды под давлением 18 фунтов на квадратный дюйм, чтобы убедиться, что радиаторы наверху заполнены.
После заполнения циркуляционный насос перемещает нагретую воду из бойлера в радиаторы и обратно. Раньше во многих системах водяного отопления не было циркуляционных насосов; вода текла под действием силы тяжести, при этом горячая вода поднималась и холодная вода падала.По этой причине у многих отдельно стоящих чугунных радиаторов соединения трубопровода находятся в нижней части радиатора. Нагретая вода поступает в радиатор и поднимается за счет конвекции, тогда как более холодная вода внутри радиатора падает обратно в котел.
До появления циркуляционных насосов путь наименьшего сопротивления воде всегда был через радиаторы верхнего этажа. Старожилы замедлили поток к самым верхним радиаторам, вставив металлическое отверстие (кусок металла размером с никель с маленьким отверстием) внутрь клапана подачи радиатора.Друг-подрядчик сказал мне, что его дед будет делать их из табачных банок Prince Albert. Он использовал ножницы, чтобы вырезать круг, а затем пробить отверстие гвоздем — работало как заклинание.
Проблема, однако, заключается в том, что, когда вы добавляете насос в систему, путь наименьшего сопротивления смещается к радиаторам на первом этаже, и это часто приводит к тому, что радиаторы наверху становятся холодными. Там, где нет потока горячей воды, нет тепла. Если вы выпускаете воздух, но воздух не поступает, а радиатор все еще не нагревается, скорее всего, проблема в этом.Профессионалы знают это, и при вызове для устранения неполадок большинство снимет отверстия с радиаторов верхнего этажа и установит их на радиаторах нижнего этажа, чтобы сбалансировать систему.
Паровые радиаторы 101
Труба на этой стене, вероятно, питает радиатор, расположенный на полу над этой однотрубной паровой установкой.
Alli Coate
Alli Coate
Если у вас есть паровое отопление, каждый из ваших радиаторов будет иметь одну или две трубы. Все паровые радиаторы используют силу тяжести, чтобы вернуть сконденсированный пар (так называемый «конденсат») в котел.Ключ к тому, чтобы все это работало, — поддерживать низкое давление в системе. Если вы не можете отапливать свой старый дом давлением 2 фунта на квадратный дюйм или меньше (это давление, которое использует Эмпайр-стейт-билдинг), что-то не так.
Пар высокого давления может удерживать вентиляционные отверстия в однотрубной паровой системе закрытыми, а при закрытых вентиляционных отверстиях воздух не может выходить из системы. Если воздух не выходит, пар не может попасть внутрь. Высокое давление также может привести к тому, что конденсат останется в системе, а это может привести к звукам ударов и большим счетам за топливо.
Устройство, которое контролирует давление, — это «Pressuretrol», , и оно находится на котле. Для отопления дома всегда должно быть минимально возможное значение.
Однотрубные паровые радиаторы
Однотрубные паровые радиаторы часто соединяются только через их днище. Раздел подобен отдельному ломтику в буханке хлеба. Пар легче воздуха, поэтому, когда он входит в однотрубный паровой радиатор через подающий клапан в нижней части радиатора, он поднимается, выталкивая воздух вперед.Воздух будет выходить из радиатора через вентиляционное отверстие, которое находится на последней секции и примерно на трети пути вниз от верха. Почему? Если бы вентиляционное отверстие было на самом верху этой последней секции, пар легче воздуха закрывал бы его до того, как большая часть радиатора нагрелась. Помните, что если воздух не выходит, пар не может попасть внутрь.
Двухтрубные паровые радиаторы
Двухтрубные паровые радиаторы имеют клапан подачи пара либо в верхней части радиатора, либо (реже ) на дне.Возврат — труба, по которой конденсат самотеком возвращается в котел — всегда находится в нижней части радиатора. Это может быть конденсатоотводчик или то, что мы называем «паровым» устройством, которое встречается в десятках форм и размеров.
В отличие от однотрубных радиаторов, вы можете настроить подающий клапан на двухтрубном радиаторе, чтобы пропускать больше или меньше пара, что является основным преимуществом этой системы. В однотрубном радиаторе пар и конденсат разделяют это ограниченное пространство внутри однотрубного подающего клапана, и если вы дросселируете этот клапан, вы получите много шума и разбрызгивания вентиляционных отверстий, когда пар разбрасывает воду. в плотных пределах частично закрытого клапана.
Паровые радиаторы, подключенные сверху и снизу, можно легко переоборудовать для работы на горячей воде.
Clare Martin
Clare Martin
Преобразование радиаторов
Поскольку двухтрубные паровые радиаторы имеют соединения как сверху, так и снизу каждой секции радиатора, их можно переоборудовать для работы на горячей воде. (Однотрубные радиаторы, с другой стороны, не могут быть преобразованы, в первую очередь потому, что они подключаются только снизу.)
Старые паровые радиаторы обычно требуют большего обслуживания, чем их аналоги с горячей водой (включая промывку низкого уровня котла — отключение воды один раз в неделю, чтобы котел не забился и не перегорел), поэтому многие подрядчики рекомендуют переоборудование.
Тем не менее, прежде чем это сделать, нужно о многом подумать. Поскольку радиаторы с горячей водой должны работать при более низкой температуре, ваш радиатор должен быть достаточно большим, чтобы обеспечивать достаточное количество тепла в самые холодные дни. Поскольку большинство паровых радиаторов изначально имеют слишком большие размеры (см. «Внешний вид — это все» ниже), обычно это не проблема.
Самый большой вопрос, который следует рассмотреть, — способны ли ваши паровые радиаторы и старые трубы выдерживать давление от 12 до 18 фунтов на квадратный дюйм, необходимое для системы горячего водоснабжения. До сих пор эта старая паровая система работала с давлением менее 2 фунтов на квадратный дюйм.Если есть утечки, вы заметите их, когда переключитесь на горячую воду, поэтому лучше искать утечки, пока у вас еще есть пар. Простой способ сделать это — поднять давление (только временно!) До 10 фунтов на квадратный дюйм и провести тщательный поиск утечек.
Внешний вид — это все
Деревянные крышки, такие как эта от Wooden Radiator Cabinet Co., обеспечивают привлекательный способ скрыть радиаторы, но они также сокращают выходную мощность на целых 30 процентов.
Негабаритные радиаторы
Когда прибыла воздушная пандемия испанского гриппа 1918 года и унесла жизни 675 000 американцев, многие люди стали бояться воздуха в своих домах — и не зря.В 1919 году Совет здравоохранения отреагировал на это, потребовав, чтобы люди держали окна приоткрытыми зимой, чтобы впускать свежий воздух. Следовательно, радиаторы стали больше — достаточно большими, чтобы обогреть весь дом в самый холодный зимний день, часто с открытыми окнами. (В более мягкие дни термостат отключит однотрубные паровые радиаторы до того, как они станут горячими на всем протяжении.)
Избыточные радиаторы были нормой во время ревущих 20-х годов, но когда наступила Великая депрессия — и потому что испанцы Грипп так и не вернулся — люди начали закрывать окна, чтобы сэкономить топливо, и все эти негабаритные радиаторы, работающие сверхурочно, сделали внутри довольно жарко.
Бронзирующие радиаторы
Люди вскоре узнали, благодаря отчету Национального бюро стандартов за 1935 год, что краска, содержащая металлические хлопья, может снизить мощность радиатора до 20 процентов. Они начали бронировать свои радиаторы алюминиевой или золотой бронзовой краской, поэтому многие старые радиаторы окрашены в серебристый или бронзовый цвет.
Кожухи для радиаторов
Люди также обнаружили, что установка кожуха над радиатором снизит его выходную мощность. Простая полка над чугунным радиатором снижает его мощность на 20 процентов.Классический кожух радиатора, который имеет сплошную верхнюю часть и металлическую перфорированную переднюю часть, снижает мощность на 30 процентов, поэтому мы находим их во многих домах.
Удаление воздуха из радиатора.
Ремонт радиаторов: прокачка
Если вы обнаружите, что ваши радиаторы для горячей воды не такие теплые, как вам хотелось бы, им может потребоваться прокачка . Поскольку холодная вода содержит больше воздуха, чем горячая, при нагревании этот воздух выходит из раствора и поднимается вверх, обычно находя место в батареях отопления.Оказавшись там, он может заблокировать поток воды, в результате чего некоторые радиаторы останутся холодными. «Стравливание» — это процесс открытия вентиляционного отверстия, чтобы позволить захваченному воздуху выйти, чтобы поток мог продолжаться.
Как удалить воздух из радиатора горячей воды:
- найдите вентиляционное отверстие в верхней части.
- Выключите термостат, чтобы вода не текла.
- Приготовьте небольшое ведро и тряпку, чтобы уловить любые брызги, а затем откройте вентиляционное отверстие с помощью отвертки или вентиляционного ключа (старомодные ключи с заводным заводом часто подходят для вентиляционных отверстий радиатора).
- Как только воздух перестанет разбрызгиваться и начнет течь вода, все готово.
Все паровые радиаторы изначально полностью заполнены воздухом, и они будут стравливаться автоматически, пока система работает должным образом. Однотрубные радиаторы пропускают воздух через вентиляционные отверстия; воздуховод из двухтрубных радиаторов проходит через устройство, которое вы видите на выпускной стороне радиатора (это труба, ближайшая к полу).
Ремонт радиаторов: утечки
Когда дело доходит до ремонта протекающих радиаторов, нет простого решения — все зависит от того, где утечка и насколько она серьезна.Паровые радиаторы, поскольку они находятся под гораздо меньшим давлением, чем радиаторы с горячей водой, обычно легче ремонтировать.
Для начала определите место утечки. Смотровое зеркало (доступное в вашем местном хозяйственном магазине) может помочь, так как оно позволит вам заглядывать за углы и в труднодоступные места. Если утечка — это всего лишь точечное отверстие, а не серьезная катастрофа из-за сильного замораживания, возможно, вы сможете ее исправить.
Нет продуктов, которые можно было бы залить в радиатор, чтобы остановить утечку, но представитель компании J-B Weld Company из Сульфур-Спрингс, штат Техас, говорит, что многие из их клиентов добились большого успеха, используя J-B Weld для ремонта старых чугунных радиаторов.Несколько профессионалов, с которыми я разговаривал, также сообщают, что использовали его для успешного устранения утечек радиатора. Однако этот процесс немного сложен.
Как устранить утечку в радиаторе:
- Сначала слейте воду из радиатора и удалите краску, грунтовку или ржавчину с места утечки.
- Очистите поверхность очистителем, не содержащим нефтепродуктов, например ацетоном или разбавителем для лака, чтобы удалить всю грязь, жир и масло.
- Обработайте поверхность напильником.
- Смешайте два элемента продукта вместе в пропорции 50/50 и нанесите его толщиной не менее 1/32 дюйма, стараясь не попасть на кожу или в глаза.
- Дайте ему высохнуть не менее 15 часов и проверьте, что у вас получилось.
Я спросил, может ли продукт выдерживать колебания температуры и, как следствие, расширение и сжатие, характерные для чугунных радиаторов. Представитель сказал мне, что продукт действительно «размягчается» при нагревании и будет двигаться вместе с металлом. Однако это не то смягчение, которое вы заметите. Чтобы это произошло, вам нужно нагреться до 400 ° F (продукт годен до 500 °).Обычно паровой радиатор имеет верхнюю границу около 229 °, а радиатор с горячей водой — около 180 °. Пока вы можете получить доступ к утечке (и готовы приложить усилия), похоже, это может быть хорошим решением.
Подробнее из
Old House Journal :
Управление паровыми радиаторами — The New York Times
Во время учебы в докторантуре. Шесть или семь лет назад Маршалл Кокс, изучавший электротехнику в Колумбийском университете, регулировал температуру в своей комнате зимой, как это делают большинство жителей Нью-Йорка с помощью паровых радиаторов.Он открыл окно.
Но затем его брат-близнец Джереми переехал в Нью-Йорк, чтобы танцевать в «Come Fly Away» на Бродвее. Его брат «постоянно», — сказал мистер Кокс, — жаловался, что «он закипал или замерзал, много раз и то, и другое в течение ночи». Это побудило Маршалла Кокса изобрести Cozy — крышку радиатора, которая может удерживать тепло в перегретой комнате и переносить ее в недогретую комнату. Cosy, которую г-н Кокс назвал «прославленной прихваткой для духовки» и которая продается на ограниченной основе, выиграла $ 220 000 M.ЭТО. Премия «Чистая энергия» 2012 года.
Победа Cosy понятна. Он решает проблему, которая беспокоит жителей Нью-Йорка с начала 1900-х годов, когда в соответствии с директивой Совета здравоохранения, требовавшей открывать окна даже в самые холодные зимние дни, требовались радиаторы увеличенного размера. Это было тогда, когда «свежий воздух» считался универсальным панацеей.
Но сегодняшние жильцы квартир и кондоминиумов не должны страдать. Благодаря современным технологиям, программам энергосбережения и горстке мастеров, разбирающихся в вековых сантехнических технологиях, существует множество способов приручить вышедшие из строя радиаторы.
Большая часть проблемы перегрева Нью-Йорка может быть связана с эпидемией испанского гриппа 1918 года, сказал Дэн Холохан, историк отопления и автор 18 книг по этой теме. «Впервые я заметил это в своих инженерных книгах 1920-х годов, — сказал он. «Авторы упоминают« движение свежего воздуха »и предупреждают, что и котлы, и радиаторы теперь должны были быть намного больше из-за необходимости держать окна открытыми по приказу Совета здравоохранения».
Считалось, что свежий воздух защищает от болезней, передающихся воздушно-капельным путем, таких как грипп.Несмотря на то, что «испанский грипп» утих в 1920 году, инженерные стандарты, диктующие большие радиаторы, остались.
Теперь, когда старший сантехник Джон Катанео отвечает на звонок, «Я мог бы написать сценарий почти для каждого звонящего», — сказал он. «Я киплю, не могу спать по ночам, и здание бесполезно».
Теоретически паровое отопление — это просто, эффективно и легко в обслуживании. Бойлер нагревает воду примерно до 212 градусов. Он становится паром под давлением и проходит через контур труб.Часть пара попадает в радиаторы, подключенные к контуру. Пар передает тепло металлу радиатора, который нагревает воздух в помещении. Эта передача заставляет пар остывать, и он снова превращается в воду, называемую конденсатом. Конденсат возвращается в котел для повторения цикла.
Но правильно работающая паровая система отопления — это тонкий баланс. Многочисленные радиаторы подключены к единому источнику пара. Сложно подать нужное количество пара в каждый радиатор, когда для каждого может потребоваться разное количество.Уменьшение количества пара в одной комнате может привести к чрезмерному выбросу пара в другую. «Это действительно просто, — сказал г-н Холохан, — но на практике очень легко облажаться».
Годы частичного ремонта часто приводят к ударам, лязгам и неравномерному нагреву, столь обычным в довоенных зданиях.
Шаги, необходимые для улучшения перегретой квартиры, зависят от того, какая у вас радиаторная система — однотрубная или двухтрубная.
В двухтрубной системе тепло отводится клапаном, который представляет собой двухпозиционную ручку, пропускающую пар.Клапаны по своей природе регулируемые.
В более распространенных однотрубных системах тепло отводится вентиляционным отверстием, которое выглядит как миниатюрная торпеда, торчащая из конца радиатора и выпускающая воздух, освобождая место для проникновения пара.
Один потенциал fix — это вентиляционное отверстие, позволяющее контролировать температуру радиатора. «В однотрубной системе регулируемое вентиляционное отверстие может быть очень недорогим решением; это часть 25 долларов », — сказал Хантер Ботто, бывший президент Ассоциации подрядчиков по сантехническому отоплению и охлаждению штата Нью-Йорк.
Однако стоимость рабочей силы поднимает цену. По словам Пола Шея, главного сантехника и консультанта по отоплению, вам придется заплатить от 250 до 750 долларов за детали и установку регулируемых вентиляционных отверстий на каждом радиаторе.
Проблема с клапанами и регулируемыми вентиляционными отверстиями заключается в том, что ими легко воспользоваться не по назначению. «Люди прибегают к крайностям», — сказал г-н Катанео. Когда людям становится холодно, они полностью включают клапаны, пока в комнате не становится слишком жарко, а затем полностью их выключают. По его словам, из-за массы радиатора «в этой штуке осталось еще полчаса тепла.«Когда в комнате становится слишком холодно, процесс повторяется. «Лучше всего установить их и дать им несколько часов, чтобы они отреагировали на корректировку», — сказал г-н Катанео. «Эти устройства могут обеспечить большой комфорт — им просто нужно время, чтобы поработать».
Эти проблемы можно уменьшить, используя правильно установленный термостатический радиаторный клапан, известный в торговле как TRV. Эти клапаны оснащены термостатом, который автоматически включает или выключает клапан в зависимости от температуры в помещении. По словам сантехников, недостатком является то, что клапаны TRV часто устанавливаются неправильно и менее долговечны, чем более простые регулируемые вручную клапаны.
Существуют также распространенные проблемы, связанные с нагревом пара, которые TRV не может исправить. Паровые системы смешивают металлические трубы, воду и воздух — рецепт ржавчины, которая может повредить клапаны и вентиляционные отверстия. Если ржавчина не покрывает их, маляры печально известны тем, что срывают их слоем краски.
В то время как жители квартир могут попытаться управлять своим собственным отоплением, предпочтительным решением проблемы перегрева в квартирах в Нью-Йорке является обслуживание всей системы, за которое многие домовладельцы не хотят платить, но город Нью-Йорк предпринимает шаги, которые могут способствовать модернизации.
Паровая система обогревает примерно 70 процентов больших зданий в городе и является одним из основных источников потерь энергии. Чтобы справиться с этой неэффективностью использования энергии, местный закон № 87 Нью-Йорка в конечном итоге потребует, чтобы 23 400 зданий площадью 50 000 квадратных футов и более прошли энергоаудит.
Хотя местное законодательство не требует от домовладельцев капитального ремонта отопления, энергоаудиты покажут, сколько можно сэкономить за счет модернизации, и позволят арендодателям узнать, какая помощь может быть предоставлена для оплаты обновлений.
Кооперативная доска 860 и 870 Западная 181-я улица, пара кирпичных довоенных зданий в непосредственной близости от моста Джорджа Вашингтона, не дождалась проведения обязательного энергоаудита для модернизации системы отопления. Здание прошло энергетическую оценку и в 2012 году подало заявку на получение государственных средств через Управление энергетических исследований и разработок штата Нью-Йорк для обновления здания, включая капитальный ремонт системы парового отопления.
Инженеры оценили экономию от модернизации теплоцентрали, которая включала изоляцию труб и котла, а также добавление ТРВ на 126 блоках, в более чем 36 000 долларов в год.Власти штата предоставили 63000 долларов на эти и другие обновления, которые помогли покрыть расходы. И за это приходится расплачиваться комфортом. «Иметь TRV, где мы можем регулировать наши радиаторы, это действительно здорово», — сказала Джейн Мейзел, член правления и учитель кооператива. За эти годы г-жа Мейзел и некоторые из ее соседей сняли радиаторы отопления, чтобы избавиться от перегрева квартир. «Теперь некоторым людям, вроде меня, вероятно, придется добавить немного», — сказала она.
Что касается мистера Кокса, то у него есть бруклинская компания Radiator Labs, которая производит и продает его крышки радиаторов Cozy, которые были установлены и исследованы в двух зданиях в Верхнем Манхэттене.Cosy работает как изолятор, задерживая тепло в радиаторе, поэтому оно не уходит в жаркую комнату. Когда комната охлаждается, вентилятор Cozy циркулирует воздух, чтобы радиатор мог обогреть комнату. По данным Radiator Labs, в зданиях, протестированных на данный момент, Cozy снизил расходы на отопление на 24-33%.
На данный момент Cozies доступны только для установки во всех зданиях, и в этом случае они стоят около 500 долларов за каждый радиатор. Каждый из них должен быть настроен специально обученным специалистом для обеспечения комфорта, что делает их изготовление для отдельной квартиры дорогостоящим.Г-н Кокс работает над разработкой регулируемой модели, которую можно было бы серийно производить для работы с радиаторами разных размеров.
7 лучших маслонаполненных обогревателей, обзоры и руководство по покупке
Вы можете найти широкий спектр моделей обогревателей, так как они очень удобны и важны в зимнее время. Один из самых эффективных видов обогревателей — это маслонаполненный обогреватель. Судя по названию, они заполнены маслом внутри и предлагают следующие функции, которые могут быть полезны при обогреве вашей комнаты:
- Номинальная мощность: Как и любой другой комнатный обогреватель, маслонаполненные обогреватели также имеют Номинальная мощность.В зависимости от модели этот рейтинг составляет 600 Вт или 800 Вт. Чем выше рейтинг, тем выше производительность, но и потребляется больше электроэнергии.
- Диапазон температур: Еще один способ получить представление о характеристиках вашего маслонаполненного нагревателя — это проверить его диапазон температур. Он указывается как от 50 ° F до 80 ° F или от 60 ° F до 90 ° F, который различается от модели к модели. Более высокий температурный диапазон всегда лучше в суровые зимы.
- Зона охвата: Для тех из вас, кто хочет использовать маслонаполненный обогреватель в большой комнате, очень важно проверить поддерживаемую зону охвата.Этот рейтинг говорит вам о максимальном размере комнаты, который может обогреть данный обогреватель, и включает такие параметры, как 150 квадратных футов или 250 квадратных футов, из которых последний лучше подходит для обогрева большой комнаты.
Поскольку сохранение тепла в комнате зимой очень важно, вы можете найти широкий ассортимент маслонаполненных обогревателей. И сегодня мы представляем вам одни из лучших маслонаполненных обогревателей со всеми их важными деталями. Это даже включает в себя подробное «Руководство по покупке» , чтобы легко различать разные модели и покупать идеальную после того, как вы дочитали эту статью до конца.
7 лучших маслозаполненных обогревателей
7 лучших маслозаполненных обогревателей Обзоры
1. TaoTronics Масляные радиаторные обогреватели
От самых передовых гаджетов до самых удобных бытовых приборов, в ToaTronics есть все .
Маслонаполненный радиаторный обогреватель этой марки может равномерно распределять тепло по всей комнате и поддерживать постоянную температуру в течение нескольких часов.
От 40 ℉ до 95 ℉, вы можете отрегулировать температуру в соответствии с вашими требованиями и вкусами.Нагреватель обеспечивает три режима нагрева с максимальной мощностью 1500 Вт, за которой следуют 900 Вт и 600 Вт. Какого бы размера ни была ваша комната, обогреватель может легко обеспечить тепло. Он оснащен сложным светодиодным дисплеем, который позволяет легко просматривать и изменять настройки.
Нагреватель оснащен интеллектуальным режимом ECO, который определяет температуру в помещении и соответствующим образом регулирует параметры нагрева для регулирования потребления энергии. Кроме того, обогреватель также имеет защиту от перегрева и автоматическую защиту от падения, которая предотвращает повреждение из-за высокой температуры и случайного падения.
Он имеет размеры 17,13 x 6,3 x 28,35 дюйма и весит 7,7 кг, что означает приличный размер и вес. Он опирается на 4 прочных колесика, что позволяет легко перемещать его из комнаты в комнату.
Лучшие характеристики:
- Мощность 1500 Вт
- Зона покрытия 200 кв. Футов
- Годовая гарантия
- 24-часовой таймер
Плюсы:
- Надежная гарантия
- Надежная гарантия и удобно
- Энергоэффективность
- Портативный
- Равномерная температура
Минусы:
Купить сейчас на Amazon
2.Электрический радиаторный обогреватель с масляным наполнением Comfort Zone
Comfort Zone — это бренд, который предлагает продукты, которые поразят вас своей непревзойденной конструкцией и качеством.
Электрический радиаторный обогреватель этой марки имеет три режима нагрева: от максимального уровня 700 Вт до минимального 500 Вт. Вы можете выбрать их вместе, чтобы получить сверхвысокую мощность нагрева в 1200 Вт.
С помощью сложного термостата вы можете регулировать температуру в соответствии с вашими требованиями и настроением.Нагреватель оснащен защитой от перегрева, предотвращающей повреждения из-за перегрева. Кроме того, он также оснащен опрокидывающимся переключателем, который автоматически отключает обогреватель при обнаружении случайного опрокидывания.
Имея размеры 16,54 x 5,31 x 22,24 дюйма и вес 7,1 кг, обогреватель имеет компактные размеры и легкий вес. Вы можете установить этот тонкий и стильный обогреватель в любую комнату, которая вам нравится, и он легко сочетается с другими приборами. Поскольку обогреватель опирается на 4 прочных колеса, они позволят вам легко перемещать его из одного места в другое.
Лучшие характеристики:
- Максимальная мощность 1200 Вт
- Три режима нагрева
- Сложный термостат
Плюсы:
- Универсальность
- Компактный размер
-
- Информация о гарантии недоступна.
Купить сейчас на Amazon
3. Масляный радиаторный обогреватель Pelonis
Pelonis — еще одна марка маслонаполненных обогревателей, пользующаяся высоким рейтингом пользователей.И, как и предыдущий вариант, этот имеет высокий рейтинг пользователей из-за различных функций и опций, которые он предлагает пользователю.
Этот маслонаполненный обогреватель Pelonis занимает 3-е место в этой статье, так как он предлагает своим пользователям широкий спектр функций. Начиная, вы получаете широкий спектр элементов управления для изменения температуры, таймера и других вещей этого нагревателя. Фактически, вы даже получаете пульт дистанционного управления, который позволяет вам легко менять все это издалека.
Помимо того, что вы предлагаете пользователю широкий спектр функций и опций, вы также получаете отличную производительность от этой модели, поскольку она рассчитана на 1500 Вт. Следовательно, вы можете использовать этот масляный обогреватель для обогрева до 164 квадратных футов площади, что лучше, чем предыдущие модели, упомянутые в этой статье.
Лучшие характеристики:
- Номинальная мощность 1500 Вт
- Зона покрытия до 164 квадратных футов
- Годовая гарантия
Плюсы:
- Поставляется с широким спектром функций
- Включает пульт дистанционного управления
- Высокая зона покрытия для большинства пользователей
Минусы:
- Качество сборки могло быть лучше
Купить сейчас на Amazon
4.Нагреватель радиатора с масляным наполнением Honeywell
Вы можете найти множество инструментов и приспособлений от Honeywell, которые предлагают различные виды использования. Но все они предлагают пользователю довольно высокую производительность, что также справедливо и для моделей маслонаполненных нагревателей.
Маслонаполненный обогреватель Honeywell HZ-789 — самая мощная модель обогревателя, упомянутая в этой статье. Это просто из-за того, что он предлагает номинальную мощность 1500 Вт. Но если вы объедините это с его эффективным дизайном плавников, вы получите очень высокую зону покрытия в 250 квадратных футов, что намного лучше, чем у всех других моделей.
Поскольку Honeywell — это очень уважаемый бренд бытовой техники, вы также получаете наивысшую трехлетнюю гарантию на нее. Когда вы объедините это с отличным качеством сборки, вы можете рассчитывать, что он легко прослужит долгое время без каких-либо проблем. Как видно по названию, это умный масляный обогреватель, который может определять наклон обогревателя и в этом случае автоматически отключается.
Лучшие характеристики:
- Номинальная мощность 1500 Вт
- Зона покрытия до 250 квадратных футов
- Трехлетняя гарантия
Плюсы:
- Самый эффективный масляный нагреватель
- Высокоэффективный прочный и надежный с отличным качеством сборки
- Длительная гарантия для спокойствия
Минусы:
- Не самая портативная модель
Купите сейчас на Amazon
5.Нагреватель радиатора с масляным наполнением Kismile
Если вы ищете впечатляющую перестройку своего дома с помощью очаровательной бытовой техники, тогда бренд Kismile — это то, что вам нужно. Сложный радиаторный обогреватель этой марки обеспечивает три режима отопления, подходящие для помещений разной площади. Самый высокий режим — 1500 Вт, за ним следуют 900 Вт и 600 Вт.
Нагреватель оснащен интеллектуальным термостатом, с помощью которого вы можете контролировать температуру, которую обеспечивает обогреватель. Он также оснащен защитой от перегрева, которая отключает нагреватель при обнаружении чрезмерно высокой температуры.Кроме того, его специальная защита от опрокидывания автоматически отключает нагреватель для предотвращения повреждений при наклоне его угла.
Этот компактный обогреватель имеет размеры 25,7 x 14,9 x 6,3 дюйма, а также легкий вес — 8,43 кг. Вы можете легко переносить его, используя встроенную ручку или перемещая его с помощью 4 удобных колес.
Лучшие характеристики:
- Номинальная мощность 1500 Вт
- Хранение шнура
- Три режима нагрева
Плюсы:
- Интеллектуальный термостат
- Портативный
- 9292
- Сведения о гарантии отсутствуют
Купить сейчас на Amazon
6.Нагреватель радиатора с масляным наполнением Costway
Costway — это еще одна небольшая и доступная марка маслонаполненных обогревателей, которая известна тем, что производит дешевые, но прилично мощные модели, что следует учитывать, если у вас ограниченный бюджет.
Этот масляный радиаторный обогреватель Costway во многом похож на предыдущий Air Choice. Для начала вы получите с ним такую же мощность в 700 Вт. Не только номинальная мощность такая же, но вы также получаете такую же зону покрытия в 120 квадратных футов, что вполне прилично для небольших комнат и ожидаемо при данной цене.
В отличие от большинства других бюджетных вариантов, этот даже предлагает пользователю довольно хорошее качество сборки. Хотя для большинства пользователей 90-дневная гарантия может быть немного меньше. Его органы управления довольно просты в использовании, что позволяет вам изменять температуру этого масляного нагревателя с 7 ребрами для большей гибкости.
Лучшие характеристики:
- Номинальная мощность 700 Вт
- Зона покрытия до 120 квадратных футов
- 90-дневная гарантия
Плюсы:
- Включает прилично работающую номинальную мощность
- Предлагает регулируемый термостат на передней панели
- Низкая цена за высокое соотношение цены и качества
Минусы:
- Только 90-дневная гарантия
Купить сейчас на Amazon
7.Масляный обогреватель Homeleader
Переходя к последнему варианту в этой статье, у нас есть масляный обогреватель Homeleader, который является одним из наиболее мощных вариантов, но имеет сравнительно более низкую цену, что делает его экономичным. вариант для большинства покупателей.
Масляный обогреватель Homeleader обеспечивает довольно высокую мощность в 1500 Вт вместе с 3 регуляторами температуры. Но в отличие от большинства других моделей мощностью 1500 Вт, его зона покрытия в 200 квадратных футов довольно высока и более чем достаточна для большинства пользователей.Одной из самых уникальных особенностей этого маслонаполненного обогревателя является то, что он оснащен светодиодным экраном на передней панели.
Помимо выбора температуры с помощью этого дисплея, вы даже можете использовать его для управления 24-часовым таймером. Вы можете изменить эти настройки с помощью элементов управления, имеющихся на устройстве, или использовать прилагаемый пульт дистанционного управления для простоты использования. Его гарантия сроком на 1 год вполне приличная и очень похожа на другие варианты. Хотя качество сборки оставляет желать лучшего с точки зрения жесткости и прочности.
Лучшие характеристики:
- Номинальная мощность 1500 Вт
- Зона покрытия до 200 квадратных футов
- Долгосрочная гарантия на 1 год
Плюсы:
- Предлагает большую зону покрытия
- Поставляется с пультом дистанционного управления
- Различные функции управления для простоты использования
Минусы:
- Немного плохое качество сборки
Купите сейчас на Amazon
Руководство по покупке лучшего масляного нагревателя
Пока в большинстве электрических комнатных обогревателей используется нагревательный змеевик для обогрева вашей комнаты, в масляных обогревателях используются радиаторы и теплое масло внутри, чтобы нагреть вашу комнату.Это делает их очень эффективными и довольно простыми в использовании, если учесть также предлагаемые ими дополнительные функции.
Говоря об особенностях, мы уже упомянули большинство их общих черт, а также различные маслонаполненные нагреватели, упомянутые в этой статье. Хотя, если вы хотите узнать больше о таких обогревателях, у нас есть подробное руководство по покупке. Он проведет вас через все важные моменты и факторы, которые вам необходимо знать, прежде чем покупать идеальный масляный обогреватель:
1.Номинальная мощность
Одна из самых важных вещей, которую необходимо проверить перед покупкой любого обогревателя для вашей комнаты или офиса, — это номинальная мощность. Это просто говорит вам о производительности данного нагревателя. Следовательно, большинство маслонаполненных обогревателей имеют номинальную мощность, которая указывается в ваттах.
Сюда входят такие опции, как 700 Вт, 100 Вт и даже 1500 Вт, в зависимости от модели, которую вы покупаете. Когда вы сравниваете все эти варианты вместе, номинальная мощность 1500 Вт является наилучшей для максимальной тепловой мощности.Тем не менее, номинальная мощность также говорит вам о потребляемой мощности или потреблении электроэнергии в рейтинге.
Следовательно, вам также следует помнить об этом перед покупкой обогревателя, поскольку более высокая номинальная мощность будет добавляться в ваш счет за электроэнергию.
2. Температурный диапазон
Вы также можете проверить температурный диапазон маслонаполненного нагревателя, чтобы получить представление о его характеристиках. Это просто потому, что эти обогреватели предназначены для повышения температуры в вашей комнате.
Следовательно, если он имеет более высокий температурный диапазон, он будет лучше работать с точки зрения обогрева вашей комнаты. В то время как некоторые модели имеют диапазон температур от 50 ° F до 80 ° F, другие могут иметь диапазон температур от 50 ° F до 90 ° F. Как и следовало ожидать, чем выше рейтинг, тем лучше, и вы можете выбрать любой из них в соответствии с вашими потребностями.
3. Зона обслуживания
Хотя большинство людей используют масляный обогреватель в своей спальне, некоторые из вас могут использовать его в другой комнате.И если это довольно большая комната, вы можете столкнуться с проблемами производительности в будущем из-за большего размера комнаты.
Следовательно, очень важно проверить зону охвата вашего маслонаполненного обогревателя, поскольку он говорит вам о размере помещения, которое он может должным образом обогреть. Он включает в себя рейтинги зоны покрытия 140 квадратных футов или 200 квадратных футов в зависимости от модели, которую вы покупаете. Как и следовало ожидать, более высокий рейтинг зоны покрытия лучше для легкого обогрева больших помещений.
4.Органы управления
Очень важно проверить все характеристики маслонаполненных нагревателей, упомянутые до сих пор. Но поскольку вы не будете постоянно использовать обогреватель на полную мощность, вы сможете заменить его при необходимости. Следовательно, большинство маслонаполненных обогревателей имеют элементы управления в виде термостата.
Многие модели также оснащены дисплеем на передней панели для удобного контроля температуры, если это необходимо. Кроме того, вы даже можете найти пульты дистанционного управления, включенные в некоторые модели.Это может быть очень удобно, если вы используете маслонаполненный обогреватель в большой комнате и хотите изменить его настройки издалека.
5. Надежность и гарантия
Как и любой другой бытовой прибор, вам нужно, чтобы ваш масляный обогреватель был очень надежным, так как он прослужит долго. Поэтому вам следует обратить внимание на маслонаполненные обогреватели, которые предлагают пользователю отличное качество сборки.
Кроме этого, вы также можете проверить гарантийный срок, предлагаемый на любой конкретный маслонаполненный обогреватель.На большинство моделей, представленных в этой статье, а также представленных на рынке, предоставляется гарантия сроком на 1 год. Хотя более качественные и надежные, также предлагают 3-летнюю гарантию, так что вы можете продолжать использовать их в течение длительного времени.
Заключение
Если зимой в вашем районе действительно холодно, то использования одеял и зимней одежды может быть недостаточно. В таких случаях очень важно использовать комнатный обогреватель, например маслонаполненный. Таким образом, они очень удобны; О лучших маслонаполненных обогревателях мы уже упоминали в этой статье.
Чтобы помочь вам выбрать лучший, мы упомянули все их функции и возможности, а также другие детали. Вы даже можете найти подробное руководство по покупке, чтобы легко различать их. Если вы все еще не можете определиться, просто выберите маслонаполненный обогреватель из наших рекомендаций:
- Если вам нужна наиболее производительная модель, упомянутая в этой статье, вы можете просто выбрать масляный обогреватель Honeywell. Вместе с ним вы получаете максимальную мощность в 1500 Вт.Это позволяет ему предлагать зону покрытия в 250 квадратных футов вместе с трехлетней гарантией.
- Хотя, если у вас ограниченный бюджет, TaoTronics Oil Filled Radiator Heaters — ваш лучший выбор. Несмотря на то, что в этой статье это самый дешевый вариант, вы получаете двухлетнюю гарантию. По данной цене он предлагает приличную мощность в 700 Вт и зону покрытия 120 квадратных футов.
- Вам также следует рассмотреть маслонаполненный обогреватель Pelonis , поскольку он предлагает отличные характеристики с номинальной мощностью 1500 Вт и площадью покрытия до 164 квадратных футов.Но в отличие от большинства других вариантов, этот поставляется с пультом дистанционного управления для простоты использования.
Обязательно поделитесь своими мыслями в разделе комментариев. Вы также можете разместить там любые вопросы, если они у вас есть!
ToughSF: Все радиаторы
На каждом космическом корабле будут радиаторы. Такая энергия, как солнечный свет, реакторы, жилые помещения и ракетные двигатели, накапливается в виде тепла, если не удаляется с помощью излучения.
Мы рассмотрим, как работает этот критически важный компонент, а затем рассмотрим существующие, будущие и возможные конструкции.
Стефан Больцманн
На Земле тепло покидает транспортное средство посредством теплопроводности, конвекции и излучения. В космическом вакууме только излучение отводит избыточное тепло.
Радиаторы Международной космической станции. Космические корабли подвергаются воздействию солнечного света в космосе, который они поглощают в виде тепла через корпус. Различное бортовое оборудование производит отходящее тепло из-за своей различной неэффективности, с разной скоростью и температурой.Даже бригада способствует выработке отработанного тепла. Если это отработанное тепло не будет удалено, оно будет накапливаться и увеличивать температуру космического корабля, пока не расплавится. Радиаторы очень важны по этой причине.
Радиаторы работают за счет излучения электромагнитной энергии. Он состоит из фотонов с длиной волны, определяемой температурой излучателя.
Угадайте, при какой температуре находится этот выпускной коллектор. Примеры включают инфракрасные волны, излучаемые нашим телом (300K), красно-оранжевые видимые длины волн, излучаемые расплавленным железом (1430K) и ярко-белый цвет солнечной поверхности (5800K).-8.
Температура указана в Кельвинах.
Расчетные факторы
Используя уравнение Стефана Больцмана, мы можем быстро увидеть, что радиатор с лучшим коэффициентом излучения, большей площадью поверхности и более высокой температурой удаляет больше отработанного тепла.
Слева радиаторы 1100K. Справа радиаторы 2700К. Последний фактически обрабатывает в три раза больше отходящего тепла. На космических кораблях важно использовать самые легкие компоненты для каждой задачи.Космический корабль с более легкими радиаторами будет быстрее ускоряться и иметь больше deltaV, что означает, что он может идти дальше и делать больше при меньшем количестве топлива.
Если нам нужен легкий радиатор, мы хотим, чтобы он имел самый высокий коэффициент излучения. Мы можем добиться этого, используя естественно темные материалы, такие как графит, или закрашивая блестящие металлы черной краской.
Радиатор большего размера весит больше. Поэтому нам нужны радиаторы наименьшего возможного размера. Чтобы компенсировать меньшую площадь поверхности, мы можем увеличить рабочую температуру.Небольшое повышение температуры приводит к значительному увеличению количества удаляемого отходящего тепла. Это означает, что горячие радиаторы намного легче и меньше холодных.
Дополнительные сведения
Система EAC ISS Типичный радиатор принимает охлаждающую жидкость от горячего компонента. Температура компонента охлаждающей жидкости на выходе — это начальная температура в радиаторе. Радиатор служит интерфейсом, который отводит тепло охлаждающей жидкости, что приводит к более низкой температуре на выходе из радиатора.Охлаждающая жидкость возвращается к компоненту для завершения цикла отвода отходящего тепла.
Обратите внимание, что максимальная температура теплообменника, подаваемая на пар, является самой низкой температурой жидкого натрия в активной зоне реактора. Тепло течет только от горячего объекта к более холодному. Поэтому радиатор может работать только тогда, когда температура компонента выше, чем температура охлаждающей жидкости на выходе из радиатора.Например, если ядерный реактор работает при 2000 К, радиатор должен работать при 2000 К или меньше.
Реактор от COADE. Реактор работает при 2907К, а в радиатор поступает теплоноситель при 2400К. Разница между температурами на входе и выходе в радиаторе зависит от многих факторов, но обычно мы хотим максимально возможной разницы. Эта разница температур особенно важна для выработки электроэнергии.Большая разница означает, что от источника тепла можно извлечь больше энергии. Это также означает, что для охлаждения компонента требуется меньше охлаждающей жидкости.
Это создает проблемы с реалистичным дизайном.
Общее решение — использовать два комплекта радиаторов, работающих при разных температурах: один низкотемпературный контур и один высокотемпературный. Он отлично работает, когда ваше низкотемпературное отходящее тепло составляет несколько киловатт от систем жизнеобеспечения и авионики. Необходимо найти другие решения для компонентов, которые должны храниться при низких температурах, но при этом выделяют мегаватты отходящего тепла, например, лазеры.Эта конструкция имеет три набора радиаторов с уменьшающейся площадью для различных температурных составляющих. Для низкотемпературных высокотемпературных компонентов необходимо использовать тепловые насосы. Они могут перемещать отходящее тепло против температурного градиента, позволяя, например, радиатору на 1000K охладить компонент на 500K. Однако это требует затрат энергии. Перемещение тепла с 500 К до 1000 К обходится насосу в 1 ватт на каждый перемещенный ватт. Реалистичный насос не будет эффективен на 100% и потребует более 1 ватта, чтобы переместить ватт отработанного тепла.
- Мощность насоса: (Отводимое тепло * Tc / (Th — Tc)) / КПД насоса
Мощность насоса — это сколько ватт потребляют тепловые насосы. Отработанное тепло — это количество ватт, которое необходимо отвести от компонента. Tc — температура компонента. Это температура радиатора в градусах Кельвина. КПД насоса — это коэффициент.
Холодильный цикл является примером теплового насоса. Охлаждающая жидкость обычно должна быть жидкой.Это накладывает нижний и верхний предел температуры охлаждающей жидкости; любой холоднее, и он замерзнет и заблокирует трубы, любой более горячий он закипит и перестанет течь. Например, водяную охлаждающую жидкость можно использовать только при температуре от 273 до 373 К. Что еще более важно, он ограничивает разницу температур, которую можно получить от радиатора.
Большие перепады температур требуют, чтобы охлаждающая жидкость долгое время находилась внутри радиатора. Для этого требуются радиаторы большего размера или длинные обходные пути для труб. По мере того, как охлаждающая жидкость становится холоднее, она излучает меньшую скорость, а это означает, что последнее понижение температуры на 10 кельвинов может занять экспоненциально больше времени, чем первое понижение на 10 кельвинов.Есть сильная убывающая доходность.
Есть также структурные проблемы. Большие перепады температур вызывают термические нагрузки. Они могут быть слишком большими, чтобы справиться с ними. Легкие, напряженные радиаторы склонны плохо реагировать на любые боевые повреждения, что делает радиаторы слабым местом для любого военного корабля.
Опорные лонжероны радиаторов МКС. Разгоняемый космический корабль будет нуждаться в гораздо большей поддержке. В целом, мы должны иметь в виду, что существует ограниченный диапазон температур между горячим и холодным концом радиатора, и что его характеристики не могут быть просто получены с помощью уравнения Стефана Больцмана для максимальной температуры.2 панель радиатора:
Мы можем видеть, что натрию требуется 17 секунд, чтобы остыть от 1000K до температуры, близкой к его температуре плавления 370K. Любой кулер, и он застынет в трубках. Если мы усредним излучаемые ватты, мы получим значение, близкое к 11,46 кВт. Это соответствует средней температуре излучения 545 К.
Наконец, радиатор подвергается нагрузкам при ускорении космического корабля. Некоторые типы радиаторов ломаются или разлетаются при сильном ускорении, поэтому перед выбором конструкции необходимо учитывать характеристики космического корабля.
Твердотельные радиаторы
Простой дизайн, используемый сегодня.
Он состоит из металлической пластины, через которую проходят полые трубки для прохождения охлаждающей жидкости. Отработанное тепло выходит из хладагента в материал радиатора, который излучает его от его открытых поверхностей.
Эта конструкция имеет довольно высокую массу на единицу площади и низкие температурные ограничения, что делает ее одной из худших по характеристикам. Максимальная температура — это то, что сохраняет материалы радиатора как твердыми, так и прочными, что важно, поскольку многие металлы быстро теряют прочность по мере приближения к своей температуре плавления.
Охлаждающая жидкость должна оставаться жидкой на протяжении всего цикла охлаждения, поэтому это ограничивает достижимую разницу температур. Использование металлов, таких как олово, или солей, таких как натрий, позволяет улучшить разницу температур, но для их перекачивания требуется специальное, иногда нереактивное, иногда энергопотребляющее оборудование.
Несколько радиаторов будут передавать тепло друг другу и терять эффективность. Расположение радиаторов вокруг космического корабля должно учитывать взаимное отражение, когда тепло одного радиатора перехватывается и поглощается другим радиатором.2, если рассматривать только открытые панели.
Пока что только радиаторы из углеродного волокна без покрытия, работающие на 800-1000К, достигли такой плотности.
Альтернативная конструкция обеспечивает лучшую плотность за счет удаления контуров охлаждающей жидкости и насосов. Тепловая трубка имеет горячий конец и холодный конец, разделенные вакуумом.
Тепловая трубка, отводящая отработанное тепло в радиатор. Твердый хладагент выкипает, а затем конденсируется на холодном конце, а затем рециркулирует за счет капиллярного действия или центробежного ускорения.Этот метод допускает высокие рабочие температуры и не требует насосов движущихся частей, но высокая масса на единицу площади сводит на нет многие из его преимуществ.
На военном корабле радиаторы — слабое место. Яркие, открытые и трудно защищаемые, в них легко попасть, а после повреждения они могут вывести космический корабль из строя. Они могут убить военный корабль, даже не пробивая броню. Избыточные радиаторы налагают массовый штраф. Покрытие радиаторов пластинами брони значительно снижает их теплопроводность между охлаждающей жидкостью и открытыми поверхностями, что, в свою очередь, снижает их эффективность.
Решения для снижения уязвимости радиаторов включают направление их ребром к противнику, перемещение их в заднюю часть корабля или использование выдвижных конструкций.
Справа радиаторы освещены вражеским огнем. Слева выступ корпуса защищает радиаторы от повреждений. Если все радиаторы убраны, космический корабль должен полагаться на радиаторы для охлаждения. Источник тепла мощностью в мегаватт может испарить тонну воды менее чем за семь минут, так что это будет работать только в течение очень коротких периодов времени.
Высокотемпературные твердотельные радиаторы сталкиваются с проблемами, такими как необходимость иметь дело с закипанием охлаждающей жидкости или необходимостью удерживать огромное давление для поддержания жидкости в сверхкритическом состоянии. Решение — использовать твердые блоки из металла вместо охлаждающей жидкости. Запуск этих блоков, как поезд по рельсам, позволяет использовать надежные радиаторы, которые могут выдерживать сильные ускорения и температуры вплоть до точек кипения блоков охлаждающей жидкости (в некоторых случаях 4000K, если рельсы активно охлаждаются). Чем меньше блоки, вплоть до размера шариков, тем быстрее они остывают и тем короче должна быть дорожка, что приводит к экономии массы и площади.
Радиаторы подвижныеОдна из основных причин того, почему твердые радиаторы настолько массивны, заключается в том, что им нужны трубы для охлаждающей жидкости, насосы и теплообменники для отвода отработанного тепла от оборудования на открытые поверхности.
Чтобы значительно уменьшить плотность площади, мы можем разработать радиатор, не требующий громоздких контуров охлаждающей жидкости. Вместо этого перемещаем радиатор.
Движущиеся радиаторы зависят от самого материала радиатора, который перемещается через теплообменник в космос, чтобы отвести тепло, а затем обратно внутрь.2 оценки. Однако движущихся частей гораздо больше, а излучающие поверхности составляют лишь часть объема, занимаемого радиаторами. Если не использовать очень легкие материалы, опорная конструкция сведет на нет преимущество такого радиатора в массе.
От высокой границы. Конструкция с диском и барабаном имеет теплообменник в форме барабана, катящийся по излучающему диску. Радиатор hoola-hoop представляет собой большой диск, удерживаемый на кончике барабанным теплообменником.
Петли для ремня держатся ребром к солнцу. Угловые петли будут меньше страдать от повторного поглощения излучаемого тепла на внутренних поверхностях, что более важно при более высоких рабочих температурах. Если колесо или петля заменяется гибким или гусеничным ремнем, его можно заставить двигаться по разным путям. «Радиатор с поясной петлей» может приблизить радиатор к космическому кораблю и снизить прочность конструкции, необходимую для выдерживания ускорений или вибраций.
Конфигурация проволочной петли использует черные углеродные волокна в качестве излучающей поверхности. Они выбрасываются из теплообменника и удерживаются на месте центростремительной силой. Использование материалов с высокой прочностью на разрыв позволяет создавать чрезвычайно легкие петли.
От высокой границы. Для изготовления проволоки используются углеродные нанотрубки. Ролики могут направлять провода вместо центростремительной силы, тем самым становясь еще более легкой версией ремня-радиатора.Потребуются материалы с высокой прочностью на разрыв, так как это позволяет роликам и двигателям удерживать провода под натяжением, чтобы предотвратить их скольжение или спутывание.
Радиатор с вращающимся диском — это подвижный радиатор, центральным компонентом которого является вращающийся диск. На ступицу разбрызгивается охлаждающая жидкость. Поверхностное натяжение жидкости с низким давлением пара заставляет ее растекаться в тонкую, ровную пленку по диску. При вращении диска центростремительная сила заставляет пленку течь по мере охлаждения к желобам коллектора на краях.В этой конфигурации не используются тяжелые тепловые трубы и радиаторные насосы, но требуется использование жидкостей с очень низким давлением пара. Диск можно наклонять внутрь, наружу или наклонять, чтобы справиться с ускорением космического корабля.
Радиаторы с пузырьковой мембраной представляют собой трехмерную версию вращающегося дискового радиатора. Горячая охлаждающая жидкость разбрызгивается на надутую мембрану, в результате чего она растекается в виде тонкой пленки, которая очень эффективно теряет тепло. Вращение мембраны заставляет жидкую пленку собираться на экваторе пузыря, где она собирается и перерабатывается.
Преимущества включают возможность использования охлаждающих жидкостей с высоким давлением пара и очень легкую конструкцию. К недостаткам можно отнести необходимость удерживать пары под высоким давлением в емкости, которая должна оставаться легкой и прозрачной.Электрорадиаторы
В упомянутых до сих пор конструкциях используются физические конструкции для удержания радиаторов на месте. Это накладывает некоторые ограничения, такие как необходимость оставаться в пределах температурных пределов опорных конструкций, а для более крупных радиаторов требуется тяжелая опора, чтобы выдерживать даже легкие ускорения.
Решением было бы использовать магнитные силы для удержания радиаторов на месте. Сильный магнит может заменить физические опорные конструкции для значительной экономии массы.
Примеры таких радиаторов включают радиатор с флюсовыми выводами. Магнитные поля удерживают твердые компоненты радиатора на месте. Теплопроводящие ленты передают тепло магнитным компонентам.
Однако есть сложности. Большинство металлов теряют свои магнитные свойства при нагревании, становясь совершенно нечувствительными к магнитным полям выше точки Кюри.Требуется тщательный выбор используемых материалов и контроль температуры.
Радиатор с точкой Кюри работает примерно при температуре, при которой частицы металлической пыли теряют свой магнетизм. Железо, например, теряет ферромагнетизм при 1043К.
Вращающийся электромагнитный совок собирает железную пыль после охлаждения. В радиаторе с точкой Кюри используются металлические опилки или даже капли жидкости.Он нагревается до температуры выше точки Кюри и выбрасывается в космос, подальше от космического корабля. Магнитное поле есть, но оно не влияет на них. Железо может выделяться при температуре до 3134К и собираться при 1043К, но кобальт имеет температуру Кюри до 1388К, естественно черный и кипит при 3400К, что делает его лучшим хладагентом. Небольшой размер частиц или капель жидкости позволяет излучать несколько мегаватт отработанного тепла на квадратный метр.
Как только частицы охлаждаются ниже точки Кюри, они восстанавливают свой ферромагнетизм.На них начинает действовать магнитное поле, и они возвращаются к космическому кораблю для сбора.
Магнитные радиаторы — отличное решение для боевых повреждений — в худшем случае противник нарушит охлаждение на несколько секунд. Однако они потребляют много энергии и требуют тяжелого оборудования для создания сильных магнитных полей. Любое неожиданное ускорение или толчок космического корабля может рассеять весь материал, удерживаемый на месте магнитными полями.
Альтернативные электрические радиаторы используют электростатические силы для удержания заряженных частиц на месте.Одним из примеров является пылевой радиатор, заряженный ETHER. Заряженные частицы движутся по силовым линиям и совершают эллиптические орбиты между теплообменником и точкой сбора. Подобно капельному радиатору, заряженные частицы могут механически диспергироваться и эффективно собираться на другом конце с помощью ложек с противоположным зарядом.
Преимущество электростатических излучателей заключается в том, что они потребляют меньше энергии, поскольку создать сильный дифференциал зарядов легче, чем расширять сильное магнитное поле.Оборудование легче и менее чувствительно к изменениям температуры, поскольку не используется сверхпроводящее или криогенное оборудование, а заряженные частицы могут удерживать заряд при большей разнице температур, чем они могут сохранять свои магнитные свойства.
Однако заряд, переносимый частицами, может быть сведен на нет естественным солнечным ветром или при контакте с проводником. Это означает, что им нужен чистый короткий путь между теплообменником и точкой сбора.
Жидкокапельные радиаторы
В жидкокапельных радиаторах не используются излучающие поверхности — охлаждающая жидкость подвергается прямому воздействию вакуума.Полученные капли имеют невероятную площадь поверхности для своей массы, что обеспечивает быстрое охлаждение и чрезвычайно низкую поверхностную плотность.Поскольку охлаждающую жидкость не нужно физически удерживать, ее можно нагреть до очень высоких температур и при этом очень быстро остыть. Для жидкостей нет ограничений по термическому напряжению, поэтому изменение температуры может быть сколь угодно резким или быстрым. Им не обязательно сохранять магнитные свойства или держать заряд. Этот калькулятор может дать приблизительное представление о производительности LDR.2. Не включает массу теплообменника, каплеуловителя и коллектора.
Уже разработаны решения для таких проблем, как капли, сдуваемые солнечным ветром, сталкиваясь и сливаясь в более крупные капли или перемещаясь с разными скоростями внутри слоя капель.Давление пара по-прежнему вызывает беспокойство — горячие жидкости в вакууме имеют тенденцию быстро испаряться. Необходимо использовать специальные охлаждающие жидкости с низким давлением пара, такие как жидкий галлий, алюминий или олово до 1200K, литий до 1500K.Посолить эти жидкости таким материалом, как графитовая «крошка» или покрыть их черными чернилами, необходимо для достижения высокого коэффициента излучения. Наножидкости могут позволить использовать жидкости даже с более высокими температурами. Достижение более высоких температур означает принятие высоких скоростей потерь теплоносителя или заключение излучающего объема в мембрану, которая конденсирует и собирает пары. Мембрана должна быть прозрачной при температурах излучения.
Варианты жидкокапельных радиаторов в основном связаны с тем, как сдерживать и направлять поток охлаждающей жидкости между точками выброса и сбора.
Прямоугольный LDR имеет каплеуловитель и коллектор одинаковой длины. Коллекторный рычаг можно сделать шире эмиттера для улавливания капель, отклонившихся от их траектории из-за неожиданных движений или ошибок в образовании капель. Можно было бы перемещать коллектор выше и ниже плоскости капли, чтобы перехватывать капли, когда космический корабль ускоряется, поскольку это приведет к отклонению листа капли от плоскости.
Конструкция ICAN-II с прямоугольными жидкокапельными радиаторами. Треугольный LDR экономит массу за счет использования маленькой сборной тарелки вместо длинной руки. Однако он менее способен улавливать отклоняющиеся капли или компенсировать ускорение космического корабля.
Треугольные варианты LDR. В некоторых конструкциях LDR отсутствуют длинные ответвления и мембраны, а капли просто распыляются в космос. Импульс капель заставляет их следовать по траекториям, которые возвращают их обратно к коллекторам.Фонтан LDR стреляет каплями перед разгонным космическим кораблем. Как только они остынут, их собирают. Этот метод диспергирования капель позволяет получить максимально легкие конструкции, но при этом существует риск потери капель.
Лучше всего работает с космическими кораблями, которые плавно ускоряются в течение длительных периодов времени, например, с ядерно-электрическими кораблями на межпланетных траекториях. LDR для душа рассеивает капли перед космическим кораблем, а коллекторы просто собирают их, как черпак. У него меньший риск рассеивания капель, чем у фонтана LDR, но для него требуется длинная насадка для душа.Мембраны высокого давления могут быть дополнением к любому жидкокапельному радиатору. Они заключают в себе объем, через который проходят капли. Преимущества включают повторную конденсацию паров из слишком горячих капель, улавливание случайных капель, обеспечение более высокой скорости капель и большую устойчивость к нестабильности капельного слоя. Однако они должны оставаться прозрачными для всех длин волн, на которых излучают капли, и удерживать давление паров газа. Это конкурирующие требования: поглощение на малых длинах волн достигается с помощью очень тонких мембран, в то время как высокое давление требует толстых мембран.
Радиаторы Advanced
LDR с магнитной накачкой и фокусировкой:Магнитно сфокусированный соплом коллектора. Феррожидкости при низких температурах и жидкий металл при высоких температурах могут использоваться в качестве хладагента в жидкокапельных радиаторах. Они реагируют на вихревые токи и магнитные поля, позволяя перекачивать хладагент без каких-либо движущихся частей за счет магнитогидродинамики.
Магнитные поля также можно использовать для восстановления капельного листа. Циклические поля могут толкать и тянуть группу капель на расстояния, пропорциональные напряженности поля. Поля с высокой напряженностью могут позволить каплям простираться на несколько десятков метров, прежде чем они будут восстановлены. Они также позволят LDR компенсировать свою уязвимость к рассеянию и потере капель при ускорении космического корабля, удерживая капли на месте.Вместе LDR может стать чрезвычайно легким для покрываемой области, поскольку никакая физическая опорная конструкция не должна перекрывать его длину.
Газовые хладагенты:
Мы рассматривали твердые тела и жидкости в качестве хладагентов. Также можно использовать газы.
Газовые теплоносители уже используются в ядерных реакторах. Двуокись углерода и гелий были выбраны, поскольку они инертны и поддерживают более высокие температуры, чем вода или натриевые охлаждающие жидкости.
В космосе главное преимущество газового хладагента заключается в том, что он может работать при гораздо более высоких температурах, чем жидкий или твердый хладагент. Тот же газ можно было запустить из ядерного реактора в трубы радиатора и обратно.Это также позволяет использовать надувные конструкции для радиаторов, которые могут быть намного легче, чем их жесткие аналоги.
Радиаторы с надувными ребрами. Радиаторы с несколькими выдвижными ребрами. Надувные мешки проще и прочнее, чем раскатывающиеся ребра, но имеют меньшую площадь поверхности. Однако есть ограничения и сложности. Горячий сжатый газ может быть очень химически активным. Хотя вы можете нагреть газ до температуры 3000K +, стенки труб, содержащих газ, также должны выдерживать эти температуры. Многие из сбережений массы, которые достигаются при эксплуатации радиатора при высоких температурах, теряются, пытаясь удержать газовый хладагент и выжить. Например, для перекачки газа требуется гораздо больше энергии на 1 кг перемещенного газа, чем для перекачки жидкости.
Другая трудность — очень низкая скорость передачи тепла между теплообменником и газом.Горячий газ с низкой плотностью, такой как нагретый гелий, может иметь теплопроводность в сотни раз меньше, чем жидкость, такая как расплавленный натрий. Это приводит к трудностям как на границе теплообмена, так и на границе излучающей поверхности.
Многие из этих проблем могут быть решены с помощью двухфазного контура охлаждающей жидкости, что означает, что он проводит часть своего времени как жидкость, а часть — как газ. До теплообменника охлаждающая жидкость находится в жидком виде. Он течет по трубкам с помощью простых насосов. Теплообменник разделен на множество труб меньшего размера, чтобы увеличить площадь контакта между теплообменником и хладагентом.
Мимо теплообменника теплоноситель расширяется. Падение давления позволяет ему закипеть в газ. Этот газ проходит через объем, закрытый герметичной мембраной. Благодаря сочетанию декомпрессии при расширении и закона Стефана-Больцмана газ быстро охлаждается и конденсируется на стенках мембраны. Это образует тонкую пленку в условиях микрогравитации, которая может быть направлена к точкам сбора, где жидкость перекачивается обратно в теплообменник.
Плазменный радиатор Dusty:В этом излучателе используется проводящая плазма, управляемая магнитными полями, для перемещения и управления частицами пыли.
Частицы пыли, взвешенные в плазме, ведут себя удивительным образом, и их все еще обнаруживают в области исследований пылевой плазмы. Интересные варианты поведения включают самоорганизацию в квазикристаллическую структуру, построение мостиков, похожих на нити ДНК, через плазму или сбор в диски с пустыми центрами. Все это происходит из-за самоотталкивающих зарядов, которые частицы пыли получают внутри плазмы.
Лучшее понимание этого поведения может позволить радиатору сочетать в себе все полезные характеристики: широкий диапазон рабочих температур, очень низкую массу на квадратный метр, легкость управления электромагнитными и электростатическими силами, низкую уязвимость к повреждениям и способность выдерживать сильные ускорения.
Плазма может быть довольно холодной и по-прежнему служить для манипулирования частицами пыли. Низкотемпературная плазма безопасна для манипуляций и довольно прозрачна для длин волн, на которых будут излучать частицы пыли, что означает, что она не нагревается и не уносится тепловым расширением.В простом пылевом плазменном излучателе плазма была бы захвачена магнитными петлями, такими как корональные петли. По этим плазменным трубкам двигалась пыль. Более совершенные плазменные излучатели будут распылять частицы пыли в плазму и заставлять ее самоорганизовываться в тонкие плоскости для получения максимальной площади излучающей поверхности.Простое изменение состояния ионизации частиц путем пропускания электрического тока через плазму позволило бы пыли слипаться и следовать линиям магнитного поля прямо к коллектору.
Расчет размеров электрических обогревателей плинтуса
Установка электрического обогрева плинтуса часто является самым простым и наиболее эффективным способом обогрева пристройки комнаты или когда вы перестраиваете неотапливаемое пространство, например чердак или подвал. В идеале всегда лучше продлить существующий воздуховод от центральной печи / системы кондиционирования воздуха, но иногда просто невозможно проложить дополнительный воздуховод.В настоящее время установка электрического обогревателя плинтуса — это, безусловно, самое простое решение.
Основы обогревателя плинтуса
Обогреватели плинтуса устанавливаются внизу стен и питаются от электрических цепей через проводку, которая обычно проходит через полости в стене к главной сервисной панели. Проводка может проходить через настенный термостат, или термостаты могут быть встроены в сами обогреватели. Хотя доступны портативные обогреватели для плинтусов, которые можно подключать к стандартным розеткам, они лучше всего подходят только для временного использования.Для наиболее эффективного обогрева лучше всего установить стационарные обогреватели плинтуса, прикрепленные к стене.
Постоянные нагреватели доступны в моделях на 120 и 240 вольт. По возможности устанавливайте нагреватели на 240 вольт, так как они более эффективны с точки зрения энергопотребления.
Предупреждение
240 вольт — это выходит за рамки того, с чем может безопасно справиться большинство домашних мастеров. Если вы планируете установить нагреватели плинтуса на 240 В, рассмотрите возможность работы с профессионалом для установки блоков и проводки.
Покупая обогреватели плинтуса, вы заметите множество различных характеристик, включая длину обогревателя плинтуса, мощность, силу тока и напряжение. При выборе обогревателей, достаточных для отапливаемого помещения, наиболее важным является номинальная мощность. Как правило, более длинные обогреватели для плинтусов производят большую мощность. Вот пример от одного производителя:
Мощность нагревателя основной платы 240 В для Cadet 30 дюймов 500 Вт 36 дюймов 750 Вт 48 дюймов 1000 Вт 72 дюйма 1500 Вт 96 дюймов 2000 Вт Непосредственный практический вопрос заключается в том, какая мощность вам нужна, чтобы обогреть комнату, и сколько обогревателей плинтуса следует установить.Ответ на этот вопрос будет заключаться в расчетах потребности помещения в обогреве.
Расчет мощности нагревателя: простой и быстрый метод
Очень простой метод определения необходимой вам общей мощности отопления можно найти, рассчитав площадь помещения в квадратных футах, а затем умножив полученное значение на 10 Вт, чтобы получить базовую требуемую мощность.
Например, если вы отапливаете спальню размером 12 футов на 12 футов, у нее будет 144 квадратных фута. Умножив это на 10 ватт, мы получим, что необходимая мощность обогревателя для комнаты составляет 1440 ватт.
Этот метод расчета базовой мощности предполагает, что в помещении используются современные методы строительства с типичной изоляцией стен, потолка и пола, а также потолки высотой 8 футов. Если комната отличается от этих характеристик, рекомендуется внести следующие изменения:
- Добавьте на 25% больше мощности, если высота потолков составляет 10 футов, а не 8 футов.
- Добавьте на 50% больше мощности, если высота потолков составляет 12 футов, а не 8 футов
- В более старом доме умножьте квадратные метры на 12.5 Вт, а не 10.
- В доме с ультратонкой изоляцией необходимо умножить площадь комнаты в квадратных метрах на 7,5 Вт, а не на 10.
Для нашего примера предположим, что комната имеет нормальные характеристики. При 144 квадратных футах требуемая мощность составляет 1440 Вт, что означает, что вы можете обогреть комнату с помощью одного обогревателя для плинтуса мощностью 1500 Вт или двух обогревателей на 750 Вт.
Расчет по длине обогревателя плинтуса
В этом методе предполагается, что нагреватели плинтуса на 240 В обычно производят около 250 Вт на погонный фут длины.Этот расчет предназначен для того, чтобы узнать, какой длины должен быть утеплитель для плинтуса.
- Начните с измерения ширины и длины комнаты, чтобы определить площадь в квадратных футах.
- Умножьте квадратные метры на 9.
- Используя это базовое значение мощности, добавьте 10% для КАЖДОГО из следующего, если применимо:
- Каждое окно
- Каждая внешняя дверь
- Каждая внешняя стена
- Неизолированное пространство под комнатой
- Стены с плохой изоляцией
- Потолок высотой более 8 футов
Полученное число и будет общей мощностью, необходимой обогревателям плинтуса для обогрева комнаты.Теперь разделите на 250, чтобы получить необходимую длину обогревателя плинтуса.
Используя комнату того же размера, что и в первом методе расчета, мы предположим, что наши 144 квадратных фута. В спальне одно окно и две внешние стены, но в остальном она типична. Расчет происходит так:
- 144 квадратных фута, умноженные на 9 ватт, равняются 1296 ваттам
- Добавление 10% для окна равно 1425,6 Вт
- Прибавка 20% для двух внешних стен равняется 1710.72 Вт
- Деление на 250 (нормальная мощность на погонный фут) дает 6,84 фута необходимого обогревателя плинтуса
- Округление в большую сторону означает, что необходим нагреватель на 7 футов или 84 дюйма. Стандартные нагреватели такой длины недоступны (блоки обычно доступны в размерах 48 и 36 дюймов), поэтому в этом случае наиболее вероятным выбором будет несколько нагревателей.
Рекомендуемые производителем потребности в отоплении
При выборе обогревателя для плинтуса лучше всегда немного увеличивать размер.Нет потери эффективности при обогреве обогревателями плинтуса, которые немного превышают минимальные требования.
Общая площадь помещения (кв. Футов) Рекомендуемая мощность нагревателя (Вт) Требуемый размер электрической цепи (240 В) 100 900 15 ампер 150 1350 15 ампер 200 1800 15 ампер 300 2700 15 ампер 400 3600 20 ампер 500 4500 30 ампер 800 7200 40 ампер 1000 9000 50 ампер .