Сечение кабеля по нагрузке таблица: Сечение кабеля по мощности таблица и расчёты
- Таблица сечения кабеля по мощности и току — Best Energy
- расчет сечения кабеля по мощности
- Таблица мощности проводов: рассмотрим подробно
- Выбор сечения кабеля по току
- Расчет сечения кабеля | Таблицы, формулы и примеры
- Таблицы и формулы для выбора сечения кабеля
- Таблица подбора сечения кабеля
- Расчет заполнения и нагрузки кабельного лотка — Электротехника 123
- Таблица нагрузок по сечению кабеля: выбор, расчет
- AWG Номинальные значения тока
- Искусство определения правильного поперечного сечения проводов низкого напряжения
- Онлайн-калькуляторы и таблицы размеров проводов
- Калькулятор падения напряжения
- Руководство по эксплуатации кабельного лотка — версия 2014
Таблица сечения кабеля по мощности и току — Best Energy
- Категория: Поддержка по стабилизаторам напряжения
- Опубликовано 24.08.2015 14:14
- Автор:
Abramova Olesya
Потребляемый ток определить достаточно просто, чтобы это сделать, достаточно воспользоваться формулой: I=P/U, где I – сила тока, P – мощность потребителя и U – напряжения линии, как правило, это 220В переменного тока. Чтобы рассчитать, какое требуется сечение, достаточно просуммировать токи всех потребителей и принять за расчет сечения, что:
открытая проводка
скрытая проводка
-
каждые 10 ампер = 1,25 мм.кв. медного провода;
-
каждые 8 ампер = 1,25 мм.кв. алюминиевого провода;
Таблица сечения кабеля по мощности и току
Сечение
| Медные жилы проводов и кабелей | |||
Токопроводящие жилы
| Напряжение 220В | Напряжение 380В | ||
мм. кв.
|
Ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
1,5
|
19
|
4,1
|
16
|
10,5
|
2,5
|
27
|
5,9
|
25
|
16,5
|
4
|
38
|
8,3
|
30
|
19,8
|
6
|
46
|
10,1
|
40
|
26,4
|
10
|
70
|
15,4
|
50
|
33,0
|
16
|
85
|
18,7
|
75
|
49,5
|
25
|
115
|
25,3
|
90
|
59,4
|
35
|
135
|
29,7
|
115
|
75,9
|
50
|
175
|
38,5
|
145
|
95,7
|
70
|
215
|
47,3
|
180
|
118,8
|
95
|
260
|
57,2
|
220
|
145,2
|
120
|
300
|
66,0
|
260
|
171,6
|
Сечение
| Алюминиевые жилы, проводов и кабелей | |||
токопроводящие жилы
| Напряжение, 220В | Напряжение, 380В | ||
мм. кв.
|
ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11,0
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22,0
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44,0
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132,0
|
Приведенные данные в таблице сечения кабеля по мощности и току могут быть крайне полезными при выборе стабилизаторов напряжения, нередко оказывается так, что вне зависимости от требуемой мощности, нет возможности устанавливать стабилизатор напряжения мощнее, чем это позволяет вводной кабель, который ограничивает максимальный ток и, соответственно, мощность.
Также на эти значения стоит опираться при создании новой проводки, обязательно учитывайте незначительный запас, чтобы кабель не находился длительное время в состоянии предельной нагрузки. Особенно рекомендуется избегать соединения алюминиевого и медного кабеля, т. к. подобные соединения не отличаются надежностью и долговечностью. Если подобного соединения избежать нельзя, применяйте мощные клеммные блоки с большой площадью соприкосновения с кабелями из разного металла.
Таблица сечения кабеля по мощности, току с характеристикой нагрузки
Сечение медных жил
|
Длительная нагрузка
|
Номинальный авт. выкл.
|
Предельный авт. выкл.
|
Максимальная мощность
| Характеристика однофазной бытовой нагрузки |
мм. кв
|
ток, А
|
Ток, А
|
Ток, А
|
кВт, при 220В
| |
1,5
|
19
|
10
|
16
|
4,1
|
освещение, сигнализация
|
2,5
|
27
|
16
|
20
|
5,9
|
розеточные группы, мелкая и средняя бытовая техника
|
4
|
38
|
25
|
32
|
8,3
|
водонагреватели и кондиционеры, электрические полы
|
6
|
46
|
32
|
40
|
10,1
|
электрические плиты и духовые шкафы
|
10
|
70
|
50
|
63
|
15,4
|
вводные питающие линии
|
youtube.com/embed/tXO5ndetv8Y?rel=0&fs=1&wmode=transparent» frameborder=»0″ allowfullscreen=»» title=»JoomlaWorks AllVideos Player»/>
расчет сечения кабеля по мощности
Калькулятор позволяет рассчитать сечение токоведущих жил электрических проводов и кабелей по электрической мощности.
Вид электрического тока
Вид тока зависит от системы электроснабжения и подключаемого оборудования.
Выберите вид тока: ВыбратьПеременный токПостоянный ток
Материал проводников кабеля
Материал проводников определяет технико-экономические показатели кабельной линии.
Выберите материал проводников:
ВыбратьМедь (Cu)Алюминий (Al)
Суммарная мощность подключаемой нагрузки
Мощность нагрузки для кабеля определяется как сумма потребляемых мощностей всех электроприборов, подключаемых к этому кабелю.
Введите мощность нагрузки: кВт
Номинальное напряжение
Введите напряжение: В
Только для переменного тока
Система электроснабжения: ВыбратьОднофазнаяТрехфазная
Коэффициент мощности cosφ определяет отношение активной энергии к полной. Для мощных потребителей значение указано в паспорте устройства. Для бытовых потребителей cosφ принимают равным 1.
Коэффициент мощности cosφ:
Способ прокладки кабеля
Способ прокладки определяет условия теплоотвода и влияет на максимальную допустимую нагрузку на кабель.
Выберите способ прокладки:
ВыбратьОткрытая проводкаСкрытая проводка
Количество нагруженных проводов в пучке
Для постоянного тока нагруженными считаются все провода, для переменного однофазного — фазный и нулевой, для переменного трехфазного — только фазные.
Выберите количество проводов:
ВыбратьДва провода в раздельной изоляцииТри провода в раздельной изоляцииЧетыре провода в раздельной изоляцииДва провода в общей изоляцииТри провода в общей изоляции
Минимальное сечение кабеля: 0
Кабель с рассчитанным сечением не будет перегреваться при заданной нагрузке. Для окончательного выбора сечения кабеля необходимо проверить падение напряжения на токонесущих жилах кабельной линии.
Длина кабеля
Введите длину кабеля: м
Допустимое падение напряжения на нагрузке
Введите допустимое падение: %
Минимальное сечение кабеля с учетом длины: 0
Рассчитанное значение сечения кабеля является ориентировочным и не может использоваться в проектах систем электроснабжения без профессиональной оценки и обоснования в соответствии с нормативными документами!
Таблица сечения кабеля по мощности и току
Сечение
| Медные жилы проводов и кабелей | |||
Токопроводящие жилы
| Напряжение 220В | Напряжение 380В | ||
мм. кв.
|
Ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
1,5
|
19
|
4,1
|
16
|
10,5
|
2,5
|
27
|
5,9
|
25
|
16,5
|
4
|
38
|
8,3
|
30
|
19,8
|
6
|
46
|
10,1
|
40
|
26,4
|
10
|
70
|
15,4
|
50
|
33,0
|
16
|
85
|
18,7
|
75
|
49,5
|
25
|
115
|
25,3
|
90
|
59,4
|
35
|
135
|
29,7
|
115
|
75,9
|
50
|
175
|
38,5
|
145
|
95,7
|
70
|
215
|
47,3
|
180
|
118,8
|
95
|
260
|
57,2
|
220
|
145,2
|
120
|
300
|
66,0
|
260
|
171,6
|
Сечение
| Алюминиевые жилы, проводов и кабелей | |||
токопроводящие жилы
| Напряжение, 220В | Напряжение, 380В | ||
мм. кв.
|
ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11,0
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22,0
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44,0
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132,0
|
Для чего нужен расчет сечения?
Электрические кабели и провода – основа энергетической системы, если они подобраны неправильно, это сулит множество неприятностей. Делая ремонт в доме или квартире, а особенно при возведении новой конструкции, уделите должное внимание схеме проводки и выбору корректного сечения кабеля для питания мощности, которая в процессе эксплуатации может возрастать.
Специалисты нашей компании при монтаже стабилизаторов напряжения и систем резервного электропитания сталкиваются с халатным отношением электриков и строителей к организации проводки в частных домах, в квартирах и на промышленных объектах. Плохая проводка может быть не только в тех помещениях, где длительное время не было капитального ремонта, а также когда дом проектировался одним владельцем под однофазную сеть, а новый владелец решил «завести» трехфазную сеть, но уже не имел возможности подключить нагрузку равномерно к каждой из фаз. Нередко провод сомнительного качества и недостаточного сечения встречается в тех случаях, когда строительный подрядчик решил сэкономить на стоимости провода, а также возможны любые другие ситуации, когда рекомендуется делать энергоаудит.
Современный набор бытовых приборов требует индивидуального подхода для расчета сечения кабеля, поэтому нашими инженерами был разработан этот онлайн калькулятор по расчету сечения кабеля по мощности и току. Проектируя свой дом или выбирая стабилизатор напряжения, вы всегда можете проверить, какое сечение кабеля требуется для этой задачи. Все что от вас требуется, это внести корректные значения соответствующие вашей ситуации.
Обращаем ваше внимание, что недостаточное сечение кабеля ведет к перегреванию провода, тем самым существенно повышая возможность возникновения короткого замыкания в электрической сети, выходу из строя подключенного оборудования и возникновению пожара. Качество силовых кабелей и корректность выбора их сечения гарантирует долгие годы службы и безопасность эксплуатации.
Расчет сечения кабеля для постоянного тока
Данный калькулятор хорош также тем, что позволяет корректно рассчитать сечение кабеля для сетей постоянного тока. Это особенно актуально для систем резервного питания на основе мощных инверторов, где применяются аккумуляторы большой емкости, а разрядный постоянный ток может достигать 150 Ампер и более. В таких ситуациях учитывать сечение провода для постоянного тока крайне важно, поскольку при заряде аккумуляторов важна высокая точность напряжения, а при недостаточном сечении кабеля могут возникать ощутимые потери и, соответственно, аккумулятор будет получать недостаточный уровень напряжения заряда постоянного тока. Подобная ситуация может послужить ощутимым фактором сокращения срока службы батареи.
Таблица мощности проводов: рассмотрим подробно
Упрощенная таблица для выбора сечения проводника по номинальной мощности
Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.
В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.
Как правильно выбирать сечение провода
Почему нельзя пользоваться таблицами мощности
Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.
Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.
Итак:
- Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.
Что такое cosα
- Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
- Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
- Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.
Выбор сечения провода по номинальному току
Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.
Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.
Итак:
- Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).
На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников
- Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.
Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.
- Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
- Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.
Таблица выбора сечения провода для медных проводников
Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.
- Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.
Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.
Дополнительные аспекты выбора сечения провода
Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.
Таблица поправочных температурных коэффициентов
- Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
- Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.
Вывод
Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.
Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.
Выбор сечения кабеля по току
Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.
При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.
Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.
Таблицы ПУЭ и ГОСТ
Плотность тока
При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.
В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.
Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.
Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.
К таковым можно отнести следующее:
- Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
- Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
- Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.
К самому главному недостатку такого кабеля можно отнести более высокую цену на него.
Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.
Проведение расчетов сечения по току
При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.
В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.
Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.
I=(P*K1)/U
В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.
Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.
Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.
Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.
Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.
Расчет по току с применением дополнительных параметров
При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.
Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.
Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.
Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.
Расчет сечения кабеля | Таблицы, формулы и примеры
Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.
Для чего необходим расчет кабеля
В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:
где I – сила тока, U – напряжение, R – сопротивление.
Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:
R = ρ · L/S (2),
где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.
Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.
Что будет, если неправильно рассчитать сечение
Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:
- Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
- Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.
Что еще влияет на нагрев проводов
Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:
- Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
- Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.
Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16
Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.
Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.
Порядок расчета сечения по мощности
В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:
- Суммарная мощность всех приборов.
- Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
- ПУЭ 7. Правила устройства электроустановок. Издание 7.
- Материал проводника: медь или алюминий.
- Тип проводки: открытая или закрытая.
Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:
ΣP = (P₁ + Р₂ + … + Рₙ) · Кс · Кз,
где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:
- для двух одновременно включенных приборов – 1;
- для 3-4 – 0,8;
- для 5-6 – 0,75;
- для большего количества – 0,7.
Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.
Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм2.
Правила расчета по длине
Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:
- L – длина проводника, м. Для примера взято значение 40 м.
- ρ – удельное сопротивление материала (медь или алюминий), Ом/мм2·м: 0,0175 для меди и 0,0281 для алюминия.
- I – номинальная сила тока, А.
Шаг 1. Определить номинальную силу тока по формуле:
I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,
где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.
Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):
R = ρ · L/S.
Потеря напряжения по длине проводника должна быть не более 5%:
dU = 0,05 · 220 В = 11 В.
Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:
S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.
В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм2. Отсюда диаметр одной жилы должен быть не менее (√S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.
Как рассчитать сечение по току
Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:
I = (P · Кс) / (U · cos ϕ).
Для трехфазной сети используется другая формула:
I=P/(U√3cos φ),
где U будет равно уже 380 В.
Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:
I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.
BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм2. У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, что полностью соответствует указанному требованию.
Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.
С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм2. У кабеля ABБбШв 4×16 сечение одной жилы равно:
S = π · r2 = 3,14 · (4,5/2)2 = 15,89 мм2.
Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).
Таблицы и формулы для выбора сечения кабеля
Электроэнергия может вырабатываться генератором на напряжении 6, 10, 18кВ. Далее она идет по шинопроводам или комплектным токопроводам к трансформаторам, которые повышают эту величину до 35-330кВ. Чем выше напряжение, тем дальше эту энергию передавать. Затем уже по ЛЭП электричество идет до потребителей. Там опять трансформируется через понижающие трансформаторы до величины 0,4кВ. И между всеми этими преобразованиями электричество идет по воздушным, кабельным линиям различного напряжения. Выбор сечения этих кабелей отдельный вопрос, который и рассматривается в данной статье.
Если обратиться к основам вопроса, то его сразу можно разделить на две части. Часть первая, выбор сечения в сетях до 1кВ, ну и вторая часть (в отдельной статье) — выбор сечения в сетях выше 1кВ. Кроме того, рассмотрим общий для этих классов напряжения вопрос — определение сечения кабеля по диаметру. Сразу предупреждаю, что впереди много таблиц, но пусть это Вас не пугает, так как порой таблица лучше тысячи слов.
Выбор и расчет сечения кабелей напряжением до 1кВ (для квартиры, дома)
Электрические сети до 1кВ самые многочисленные — это как паутина, которая обвивает всю электроэнергетику и в которой такое бесчисленное множество автоматов, схем и устройств, что голова у неподготовленного человека может пойти кругом. Кроме сетей 0,4кВ промышленных предприятий (заводов, ТЭЦ), к этим сетям относится и проводка в квартирах, коттеджах. Поэтому вопросом выбора и расчета сечения кабеля задаются и люди, которые далеки от электричества — простые владельцы недвижимости.
Кабель используется для передачи электроэнергии от источника к потребителю. В квартирах мы рассматриваем участок от электрического щитка, где установлен вводной автоматический выключатель на квартиру, до розеток, в которые подключаются наши приборы (телевизоры, стиральные машины, чайники). Всё, что отходит от автомата в сторону от квартиры в ведомстве обслуживающей организации, туда лезть мы права не имеем. То есть рассматриваем вопрос прокладки кабелей от вводного автомата до розеток в стене и выключателей на потолке.
В общем случае для освещения берут 1,5 квадрата, для розеток 2,5, а расчет необходим, если требуется подключать что-то нестандартное с большой мощностью — стиралку, бойлер, тэн, плиту.
Выбор сечения кабеля по мощности
Рассматривать далее буду квартиру, так как на предприятиях люди грамотные и всё знают. Чтобы прикинуть мощность необходимо знать мощность каждого электроприемника, сложить их вместе. Единственным минусом при выборе кабеля большего сечения, чем необходимо, является экономическая нецелесообразность. Так как больший кабель больше стоит, но меньше греется. А если выбрать правильно то выйдет и дешевле и греться не будет сильно. В меньшую же сторону округлять нельзя, так как кабель будет больше греться от протекания в нем тока и быстрее придет в неисправное состояние, которое может повлечь за собой неисправность электроприбора и всей проводки.
Первым шагом при выборе сечения кабеля будет определение мощности подключенных к нему нагрузок, а также характер нагрузки — однофазная, трехфазная. Трехфазная это может быть плита в квартире или станок в гараже в частном доме.
Если все приборы уже приобретены, то можно узнать мощность каждого по паспорту, который идет в комплекте, или, зная тип, можно найти в интернете паспорт и посмотреть мощность там.
Если приборы не куплены, но покупать их входит в ваши планы, то можно воспользоваться таблицей, где занесены наиболее популярные приборы. Выписываем значения мощностей и складываем те величины, которые одновременно могут включаться в одну розетку. Приведенные ниже значения носят справочный характер, при расчете следует брать большее значение (если указан диапазон мощности). И всегда лучше посмотреть в паспорт, чем брать средние показатели из таблиц.
Электроприбор | Вероятная мощность, Вт |
---|---|
Стиральная машина | 4000 |
Микроволновка | 1500-2000 |
Телевизор | 100-400 |
Экран | Э |
Холодильник | 150-2000 |
Чайник электрический | 1000-3000 |
Обогреватель | 1000-2500 |
Плита электрическая | 1100-6000 |
Компьютер (тут всякое возможно) | 400-800 |
Фен для волос | 450-2000 |
Кондиционер | 1000-3000 |
Дрель | 400-800 |
Шлифовальная машина | 650-2200 |
Перфоратор | 600-1400 |
Выключатели, которые идут после вводного удобно разделять на группы. Отдельные выключатели для питания плиты, стиралки, бойлера и других мощных приборов. Отдельные для питания освещения отдельных комнат, отдельные для групп розеток комнат. Но это в идеале, в реальности бывает просто вводной и три автомата. Но что-то я отвлекся…
Зная значение мощности, которая будет подключаться к данной розетке мы выбираем по таблице сечение с округлением в большую сторону.
За основу возьму таблицы 1.3.4-1.3.5 из 7-го издания ПУЭ. Эти таблицы даны для проводов, шнуров алюминиевых или медных с резиновой и (или) ПВХ изоляцией. То есть то что мы используем в домашней проводке — к данному типу подходит и любимые электриками медные NYM и ВВГ, и алюминиевый АВВГ.
Кроме таблиц нам понадобятся две формулы активной мощности: для однофазной (P=U*I*cosf) и трехфазной сети (та же формула, только еще умножить на корень из трех, который равен 1,732). Косинус принимаем единице, будет у нас для запаса.
Хотя существуют таблицы, где для каждого типа розетки (розетка для станка, розетка для того, для сего) описан свой косинус. Но больше единицы он быть не может, поэтому не страшно, если примем его 1.
Еще перед взглядом в таблицу стоит определиться как и в каком количестве у нас будут проложены наши провода. Варианты есть следующие — открыто или в трубе. А в трубе можно двух- или трех- или четырех одножильных, одного трехжильного или одного двухжильного. Для квартиры нам на выбор либо два одножильных в трубе — это на 220В, либо четыре одножильных в трубе — на 380В. При прокладке в трубе, необходимо, чтобы процентов 40 оставалось свободного пространства в этой самой трубе, это для отсутствия перегрева. Если прокладывать необходимо провода в другом количестве или другим способом то смело открывайте ПУЭ и пересчитывайте для себя, или же выбирайте не по мощности, а по току, о чем пойдет речь чуть позже в этой статье.
Выбирать можно как медный, так и алюминиевый кабель. Хотя, в последнее время большее применение получает медный, так как для одной и той же мощности потребуется меньшее сечение. К тому же медь имеет лучшие электропроводящие свойства, механическую прочность, меньше подвержена окислению, и плюс ко всему срок службы медного провода выше по сравнению с алюминием.
Определились с тем, медь или алюминий, 220 или 380В? Что же, смотрим в таблицу и выбираем сечение. Но учитываем, что в таблице у нас приведены значения для двух или четырех одножильных проводов в трубе.
Посчитали мы нагрузку например в 6кВт для розетки на 220В и смотрим 5,9 мало, хоть и близко, выбираем 8,3кВт — 4мм2 для меди. А если решили алюминий, то 6,1кВт — тоже 4мм2. Хотя выбрать стоит медь, так как ток при таком же сечении будет допустимый на 10А больше.
Выбор сечения кабеля по току
Суть выбора аналогичная, только теперь у нас есть ПУЭ, где прописаны токи, но сами токи нам неизвестны. Хотя, постойте… Ведь мы знаем мощности приборов и можем по формуле вычислить величины токов. Да и токи могут быть написаны в паспортах на изделия. Аналогично смотрим в таблицы ниже. Это уже таблицы из официальных документов, так что придраться не к чему.
Выбор сечения провода с резиновой или ПВХ изоляцией по допустимому току
Данные провода наиболее распространены, поэтому и приведена эта таблица. В ПУЭ же имеются другие таблицы на все случаи жизни для проводов, кабелей, шнуров с оболочкой и без при прокладке в воде, земле и воздухе. Но это уже частные случаи. Кстати, таблица что приведена при расчете по мощности полностью является частным случаем таблиц выбора по току, которые являются официальными и описаны в ПУЭ.
Расчет кабеля по мощности и длине
В случае, если вы прокладываете кабель на длинное расстояние (ну метров 15 и более), то Вам необходимо учитывать и падение напряжения, которое вызвано сопротивлением кабельной линии.
Чем же неблагоприятно для нас падение напряжения на конце кабельной линии? Для лампочки это ухудшение светового потока при снижении напряжения, или уменьшение срока службы при повышенном напряжении. Существуют допустимые величины отклонения напряжения. Но в основном для электроприборов это плюс минус пять процентов.
В этом случае требуется произвести расчет, и в случае, если напряжение будет ниже номинального на 5% и более, то придется увеличить сечение и заново произвести расчет. Или же воспользоваться очередной таблицей.
Сейчас немного углубимся в матчасть. Падение напряжения для трехфазной сети определяется по формуле:
Эта величина состоит из двух частей, активной(R) и индуктивной(X). Индуктивной частью можно пренебречь в следующих случаях:
- сеть постоянного тока
- сеть переменного тока, при cos=1
- сети, выполненные кабелями или изолированными проводами, проложенными в трубах, если их сечение не больше определенной величины, но не будем углубляться дальше.
В общем индуктивной составляющей пренебрегаем, косинус принимаем равным 1. Значение R определяется по формуле:
где р — удельное сопротивление (для меди — 0,0175, а для алюминия — 0,03)
Далее два варианта расчета:
а) по заданному значению падения напряжения находим допустимое сечение и выбираем следующее большее значение.
б) по заданному значению мощности или тока определяем падение напряжения на участке, и в случае, если оно будет больше 5%, выбираем другое сечение и повторяем расчет.
В вышеприведенных формулах длина в метрах, ток в амперах, напряжение в вольтах, площадь в мм2. Сама величина падения напряжения в относительных величинах, безразмерная. Формулы пригодны для расчетов при отсутствии индуктивной составляющей и косинусе равном 1. Ряд сечений кабелей стандартный. В принципе с полученным значением сечения можно идти на рынок и смотреть, что подойдет с округлением в большую сторону.
А можно воспользоваться таблицами в интернетах, но эти таблицы… Не понятно откуда и для какого случая они построены. Формулы — наше всё!
Определение сечения кабеля по диаметру
Если у Вас есть возможность замерить диаметр жилы кабеля, естественно голой, без изоляции, значит можно определить сечение этой жилы. Опять у нас два пути: формула или таблица. Каждый пусть выбирает, что ему удобнее.
Формула: пидэквадратначетыре. Это все знают. Измеряем диаметр провода (линейка, штангенциркуль, микрометр), повторюсь очищенного. Значение возводим в квадрат, умножаем на число пи (равно 3,14) и делим на 4. Получаем значение сечения. Примерное, ведь погрешности тут и в числе пи и в самом измерении.
Хотите, вот таблица элементарная — измеряем диаметр, смотрим соответствует ли заявленному на бирке сечению.
Если провод многожильный, то либо каждую жилу измеряем, а потом считаем их число. Ну и умножаем число на диаметр одной и далее по схеме, приведенной выше. Либо, если они хорошо скручены в форме круга на конце, производим замер как на одножильном.
Таблица подбора сечения кабеля
Кабели и провода играют основную роль в процессе передачи и распределения электрического тока. Являясь основными проводниками электричества к потребителям электрической энергии (холодильник, стиральная машина, чайник, телевизор и т.д.), кабели и провода для всей электрической сети должны быть подобраны в соответствии с потреблением и нагрузками всех электроприборов. Для бесперебойного прохождения электрического тока необходимо сделать точный расчет сечения кабеля как по силе тока, так и по мощности нагрузки.
Для подбора сечения кабеля и провода по мощности и силе тока можно воспользоваться следующими таблицами:
Сечение токопроводящей жилы, мм2 | Для кабеля с медными жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток А | Мощность кВт | Ток А | Мощность кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Сечение токопроводящей жилы, мм2 | Для кабеля с алюминиевыми жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток А | Мощность кВт | Ток А | Мощность кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
Данные взяты из таблиц ПУЭ.
При разработке и проектировании электрической сети, необходимо правильно рассчитывать сечение кабеля по мощности и силе тока. Неправильные расчеты приведут к перегреву кабеля, что, в свою очередь, приведет к разрушению изоляции и, как следствие, к замыканию и возгоранию. Грамотный расчет позволит Вам избежать аварийной ситуации и больших затрат на ремонт электропроводки и замены электроприборов.
Материалы, близкие по теме:
Расчет заполнения и нагрузки кабельного лотка — Электротехника 123
Кабельный лоток / кабельный лоток является неотъемлемой частью любой системы управления кабелями. Выбор кабельного лотка очень важен, потому что, если размер кабельного лотка недостаточен, кабели могут быть повреждены из-за неправильного обращения и чрезмерного нагрева и т. Д. С другой стороны, нельзя пренебрегать системой поддержки кабельного лотка, поскольку она обеспечивает целостность всего кабельные системы управления.
В следующих разделах этой страницы таблицы и формулы помогают определить, сколько кабелей можно безопасно переносить через проволочную сетку / кабельный лоток каждого размера.На этой странице также приведены инструкции по определению подходящего расстояния между опорами для нагрузки в зависимости от количества кабелей, размера кабельного лотка и типа кронштейна.
Коэффициент заполнения кабельного лотка с проволочной сеткой = Поперечное сечение кабеля / Поперечное сечение лотка
Согласно NEC 392.9 (B), при использовании вентилируемого лотка с многожильным кабелем управления сумма площадей поперечного сечения не должна превышать 50 процентов. внутреннего поперечного сечения кабелепровода / лотка. Таблица заполнения проволочной сетки / кабельного лотка в разделе ниже показывает количество кабелей и нагрузку в фунтах-силах / линейных футах, создаваемую типичным 4-парным и 6-парным кабелем весом 20 фунтов / км и 40 фунтов / км соответственно.Хотя эта таблица является полезным руководством, фактические нагрузки должны быть рассчитаны с использованием кабеля, указанного для любого проекта.
Калькулятор заполнения кабельного лотка
Используйте следующую формулу для расчета количества кабелей, которые будут иметь определенный коэффициент заполнения, где:
A = внутренняя площадь лотка в дюймах 2
D = диаметр кабеля в дюймах
F = Коэффициент заполнения в%
N = Количество кабелей
Формула для количества кабелей:
N = (F / 100) * (A) / [(D / 2) 2 * Π]
ПРИМЕР:
При установке будет использоваться кабель CAT в.Диаметр 19 дюймов, 20 фунтов на 1000 фут2. Желаемый коэффициент заполнения — 40%. Кабельный лоток
из проволочной сетки имеет высоту 2 дюйма (51 мм) и ширину 2 дюйма (51 мм).
A = 3,5 дюйма 2
D = 0,19 дюйма
F = 40%
N = (40/100) * (3,5 / [(0,19 / 2) 2 * Π]) = 49 кабелей
Кабельная нагрузка / фут = 49 кабелей * 20 фунтов / 1000 футов = 0,98 фунта / фут
Ниже приведены данные для таблицы заполнения кабельного лотка с проволочной сеткой Quick Tray при заполнении на 50%. Эта таблица размеров кабельных лотков предоставлена Hoffman Enclosures Inc. и может быть изменена в любое время.
Расчет опор кабельного лотка / кабельного лотка
Размер кабельного лотка зависит от количества и типа кабелей, необходимых для текущих и будущих потребностей. Коэффициент заполнения 50% должен соответствовать максимальному количеству кабелей, протянутых в данном поперечном сечении. Опоры прямого профиля, установленные с шагом 5 футов (1,5 м), являются типичными.
Для пролетов опор более 5 футов (1,5 м) необходимо оценить кабельные нагрузки, чтобы убедиться, что пролет между опорами соответствует нагрузке.
Опору и анкер следует оценивать отдельно.
Опоры следует размещать в пределах 24 дюймов (610 мм) от стыка на прямых участках, а расстояние между опорами не должно превышать длину лотка.
Дополнительные опоры потребуются на поворотах и при изменении уровня кабельного лотка.
Также необходимо учитывать номинальную нагрузку оборудования, поддерживающего кабельный лоток.
Значения нагрузки для некоторых часто используемых опор указаны в таблице максимальной нагрузки опор лотка в разделе ниже.
После определения нагрузки на опору можно определить вес каждой опоры кабельного лотка, умножив нагрузку на опору на количество опор между опорами.
Пример расчета нагрузки на опору кабельного лотка
Вес пролета = Нагрузка на фут * Кол-во футов между опорами
Значение нагрузки на фут для кабельного лотка 2 x 2 дюйма с коэффициентом заполнения 40% Пример: 0,98 фунта / фут
Вес пролета = 0,98 * 5 = 4,9 фунта
Вес на опоре = вес пролета / 2
Таблица нагрузок по сечению кабеля: выбор, расчет
От правильного выбора сечения электропроводки зависит комфорт и безопасность в доме.При перегрузке нагрузки проводник перегревается, и изоляция может расплавиться, что приведет к возгоранию или короткому замыканию. Но сечение больше необходимого брать невыгодно, так как цена кабеля увеличивается.
Как правило, он рассчитывается в зависимости от количества потребителей, от которого сначала определяется общая мощность, потребляемая квартирой, а затем результат умножается на 0,75. В ПУЭ применяется таблица нагрузок по сечению кабеля. Он может легко определить диаметр жил, который зависит от материала и проходящего тока.Как правило, используются медные жилы.
Сечение жилы кабеля должно соответствовать точно рассчитанному — в сторону увеличения типоразмерного ряда. Наиболее опасно, когда это занижено. Тогда проводник постоянно перегревается, и изоляция быстро выходит из строя. А если установить соответствующий автоматический выключатель, то это будет часто происходить.
Если поперечное сечение провода слишком велико, это будет стоить дорого. Хотя определенный инвентарь необходим, так как в будущем, как правило, необходимо подключать новое оборудование.Рекомендуется применять коэффициент безопасности около 1,5.
Расчет общей мощности
Общая мощность, потребляемая квартирой, приходится на основной ввод, который поступает в распределительный щит, а после разветвляется на линии:
- освещение;
- группы розеток;
- Отдельные мощные электроприборы.
Поэтому наибольшее сечение силового кабеля — у входа. На исходящих линиях он уменьшается в зависимости от нагрузки.В первую очередь определяется суммарная мощность всех нагрузок. Это несложно, так как это указано на корпусах всей бытовой техники и в паспортах к ним.
Вся мощность добавлена. Аналогично производятся расчеты для каждого контура. Специалисты предлагают умножить сумму на понижающий коэффициент 0,75. Это связано с тем, что все устройства не подключены к сети одновременно. Другие предлагают выбрать секцию большего размера. Это создает резерв для последующего ввода в эксплуатацию дополнительных электроприборов, которые можно будет приобрести в будущем.Следует отметить, что такой вариант расчета кабеля более надежен.
Как определить сечение провода?
Во всех расчетах отображается сечение кабеля. По его диаметру легче определить, используются ли следующие формулы:
- S = π D² / 4 ;
- D = √ (4 × S / π).
Где π = 3,14.
В многожильном проводе сначала нужно рассчитать количество проводов (N). Затем измеряется диаметр (D) одного из них, после чего определяется площадь поперечного сечения:
S = N × D² / 1,27.
Многожильные провода используются там, где требуется гибкость. Для стационарной прокладки используются более дешевые неразъемные жилы.
Как выбрать кабель по мощности?
Для подбора проводки применяется таблица нагрузок по сечению кабеля:
- При разомкнутой линии 220 В и суммарной мощности 4 кВт медный провод 1.Принимается поперечное сечение 5 мм². Этот размер обычно используется для осветительной проводки.
- При мощности 6 кВт требуются жилы большего сечения 2,5 мм². Провод используется для розеток, к которым подключена бытовая техника.
- Для мощности 10 кВт требуется проводка сечением 6 мм². Обычно он предназначен для кухни, где подключается электрическая плита. Подход к такой нагрузке вынесен отдельной строкой.
Какие кабели лучше?
Электрики известной немецкой кабельной марки NUM для офисных и жилых помещений.В России производят кабели более низких по характеристикам марок, хотя могут иметь одно и то же название. Их можно отличить по наплыву соединения в пространство между прожилками или по его отсутствию.
Проволока выпускается монолитная и многопроволочная. Каждая жила, как и вся скрутка снаружи, изолирована ПВХ, а наполнитель между ними сделан негорючим:
- Итак, кабель NUM применяется внутри помещений, потому что изоляция на улице разрушается под воздействием солнечных лучей. лучи.
- А в качестве внутренней и внешней электропроводки широко используется кабель марки BBG. Достаточно дешево и надежно. Для прокладки в земле использовать не рекомендуется.
- Проволока марки ВВГ изготавливается плоская и круглая. Между стержнями заполнитель не наносится.
- Кабель ВВГнг-П-LS изготавливается с внешней оболочкой, не поддерживающей горение. Жилы делают круглыми до сечения 16 мм², а сверху — секторными.
- Марки кабелей ПВС и ШВВП изготавливаются многопроволочными и используются в основном для подключения бытовой техники.Его часто используют в качестве домашней электропроводки. На улице нельзя использовать многожильные жилы из-за коррозии. Кроме того, изгибная изоляция трескается при низкой температуре.
- На улице под землей проложить бронированные и стойкие кабели АВБШв и ВБШв. Броня изготовлена из двух стальных лент, что увеличивает надежность кабеля и делает его устойчивым к механическим воздействиям.
Определение токовой нагрузки
Более точным результатом является расчет поперечного сечения кабеля по мощности и току, где геометрические параметры связаны с электрическими.
При домашней электропроводке необходимо учитывать не только активную нагрузку, но и реактивную нагрузку. Сила тока определяется по формуле:
I = P / (U ∙ cosφ).
Реактивная нагрузка создается люминесцентными лампами и двигателями электроприборов (холодильник, пылесос, электроинструмент и т. Д.).
Пример расчета сечения токоведущего кабеля
Разберемся, что делать, при необходимости определим сечение медного кабеля для подключения бытовой техники общей мощностью 25 кВт и трехфазных автоматов для 10 кВт.Это соединение осуществляется пятижильным кабелем, проложенным в земле. Питание дома производится от трехфазной сети.
С учетом реактивной составляющей мощность бытовых приборов и оборудования составит:
- П срок службы. = 25 / 0,7 = 35,7 кВт;
- П обор. = 10 / 0,7 = 14,3 кВт.
Определены токи на входе:
- I ресурс. = 35,7 × 1000/220 = 162 А;
- I обор. = 14,3 × 1000/380 = 38 А.
Если однофазные нагрузки распределены равномерно по трем фазам, у одной будет ток:
I f = 162/3 = 54 А.
На каждой фазе будет текущая нагрузка:
I f = 54 + 38 = 92 А.
Все оборудование одновременно работать не будет. С учетом запаса по каждой фазе есть ток:
I f = 92 × 0,75 × 1.5 = 103,5 А.
В пятижильном кабеле учитываются только фазные жилы. Для кабеля, проложенного в земле, можно определить сечение жил 16 мм² на ток 103,5 А (таблица нагрузок по сечению кабеля).
Точный расчет силы тока позволяет снизить затраты, так как требуется меньшее поперечное сечение. При более грубом расчете кабеля по мощности сечение жилы будет 25 мм2, что обойдется дороже.
Падение напряжения на кабеле
Проводники имеют сопротивление, которое необходимо учитывать. Это особенно важно для кабелей большой длины или небольших сечений. Установлены нормы ПЭУ, согласно которым падение напряжения на кабеле не должно превышать 5%. Расчет производится следующим образом.
- Определяется сопротивление проводника: R = 2 × (ρ × L) / с.
- Имеется падение напряжения: Имеем площадку . = I × R. По отношению к линейной в процентах это будет: Have % = (U pad. / У лин. ) × 100.
В формулах использованы следующие формулы:
- ρ — удельное сопротивление, Ом × мм² / м;
- S — площадь поперечного сечения, мм².
Коэффициент 2 показывает, что ток течет через две жилы.
Пример расчета кабеля на падение напряжения
Например, необходимо рассчитать падение напряжения на проводе с поперечным сечением жилы 2,5 мм², длиной 20 м.Необходимо подключить сварочный трансформатор мощностью 7 кВт.
- Сопротивление провода: R = 2 (0,0175 × 20) / 2,5 = 0,28 Ом .
- Сила тока в проводнике: I = 7000/220 = 31,8 А .
- Падение напряжения при переноске: Есть накладка . = 31,8 × 0,28 = 8,9 В .
- Процент падения напряжения: У % = (8,9 / 220) × 100 = 4,1 %.
Переноска подходит для сварочного аппарата по требованиям правил эксплуатации электроустановок, так как процент падения напряжения на нем находится в пределах нормы.Однако его величина на подводящей проволоке остается большой, что может отрицательно сказаться на процессе сварки. Здесь необходимо проверить нижний предел допустимого напряжения питания сварочного аппарата.
Вывод
Для надежной защиты электропроводки от перегрева в течение длительного времени превышающего номинальный ток, сечения кабелей рассчитываются на длительно допустимые токи. Расчет упрощается, если по сечению кабеля приложить таблицу нагрузок. Более точный результат получается, если расчет основан на максимальной токовой нагрузке.А для стабильной и продолжительной работы в цепи электропроводки установлен автоматический выключатель.
Калибры проводов
AWG Номинальные значения тока
AWG — American Wire Gauge — используется в качестве стандартного метода определения диаметра провода, измерения диаметра проводника (неизолированного провода) с удаленной изоляцией. AWG иногда также называют калибром проводов Брауна и Шарпа (B&S).
Приведенная ниже таблица AWG предназначена для одинарного сплошного круглого проводника. Из-за небольших зазоров между жилами в многожильном проводе многожильный провод с той же допустимой нагрузкой по току и электрическим сопротивлением, что и сплошной провод, всегда имеет немного больший общий диаметр.
Чем больше цифра, тем тоньше проволока. Типичная бытовая электропроводка — это AWG номер 12 или 14. Телефонный провод имеет типичный AWG 22, 24 или 26.
В таблице ниже указаны номинальные значения тока одно- и многожильных кабелей с ПВХ изоляцией. Имейте в виду, что текущая нагрузка зависит от метода установки — корпуса — и от того, насколько хорошо сопротивление отводится от кабеля. Важны рабочая температура жилы, температура окружающей среды и тип изоляции жилы.Перед детальным проектированием всегда проверяйте данные производителя.
Для полной таблицы с одноядерными и многоядерными значениями тока — поверните экран!
1) Номинальный ток до 1000 В , одножильные и многожильные кабели с ПВХ изоляцией, температура окружающей среды до 30 o C
Загрузите и распечатайте диаграмму AWG
Значения для Сопротивление основано на удельном электрическом сопротивлении меди 1.724 x 10 -8 Ом · м (0,0174 мкОм · м) и удельное электрическое сопротивление для алюминия 2,65 x 10 -8 Ом · м (0,0265 мкОм · м).
Чем выше номер калибра, тем меньше диаметр и тоньше проволока.
Из-за меньшего электрического сопротивления более толстый провод пропускает больший ток с меньшим падением напряжения, чем более тонкий провод. Для больших расстояний может потребоваться увеличить диаметр провода — уменьшить калибр — чтобы ограничить падение напряжения.
Поправочные коэффициенты при температуре окружающей среды выше 30
o C
- температура окружающей среды 31-40 o C : поправочный коэффициент = 0,82
- температура окружающей среды 4 1-45 o C : поправочный коэффициент = 0,71
- температура окружающей среды 45-50 o C : поправочный коэффициент = 0,58
Искусство определения правильного поперечного сечения проводов низкого напряжения
Максимальный ток -пропускная способность
Чтобы было ясно в начале этой статьи, определение поперечного сечения проводов и кабелей, конечно, не самая захватывающая часть электрического проектирования.Есть гораздо более сложные и захватывающие части, чем смотреть на бесконечные столы дирижеров. Однако эта часть должна выполняться профессионально так же, как и все остальные части дизайна. Итак, возьмите очки (если вы их носите), выпейте кофе и приступим.
Искусство определения правильного поперечного сечения проводов низкого напряжения
Определение поперечного сечения проводников основано на знании максимальной допустимой нагрузки по току системы проводки, которая сама определяется на основе проводов и условия их эксплуатации.Стандарт IEC 60364-5-52 определяет значения тока в соответствии с основными принципами работы для установок и безопасности людей. Основные элементы приведены ниже.
Таблица допустимых значений тока может использоваться для непосредственного определения поперечного сечения проводников в соответствии с:
- Тип проводника
- Эталонный метод (метод установки)
- Теоретическая допустимая нагрузка по току Iz (Iz th )
Iz th рассчитывается путем применения всех поправочных коэффициентов (f) к значению рабочего тока (I B ) .Коэффициенты f определяются в соответствии с методом установки, группировкой, температурой и т. Д.
I B = Iz th × f , что дает Iz th = I B / f
Рисунок 1 — Определение поперечного сечения с использованием таблицы пропускной способности по току
Весь процесс определения правильного поперечного сечения низковольтных проводов объясняется следующими шагами.
Содержание:
- Характеристики проводов
- Системы электромонтажа: методы монтажа
- Приложение 1 — «Группы монтажа» в зависимости от типа кабеля
- Группы цепей
- Температура окружающей среды
- Риски взрыва
- Параллельные проводники
- Общий поправочный коэффициент
- Пример определения трехфазной цепи
- Сечение нейтрального проводника
- Примеры: Применение коэффициентов уменьшения гармонических токов
1.Характеристики жил
Учитываются следующие данные:
- Тип жилы: медная или алюминиевая.
- Тип изоляции, определяющий максимально допустимую температуру во время эксплуатации, XLPE или EPR для изоляции, выдерживающей 90 ° C, и ПВХ для изоляции, выдерживающей 70 ° C
Таблица 1 — Макс. рабочие температуры в зависимости от типа изоляции
Тип изоляции | Максимальная температура (1) ° C |
Поливинилхлорид (ПВХ) | Проводник: 70 |
Сшитый полиэтилен (XlPE) и этилен-пропиленовый (EPr) проводник | Проводник: 90 (1) |
Минеральный (с ПВХ-оболочкой или без нее, доступен) | Оболочка: 70 |
Минеральная (без оболочки, доступны и не контактируют с горючими материалами) | Оболочка: 105 (2) |
(1) Если проводник работает при температуре выше 70 ° C, рекомендуется проверить, что оборудование, подключенное к этому проводу, подходит для конечной температуры соединения.
(2) Более высокие рабочие температуры могут быть разрешены для определенных типов изоляции в зависимости от типа кабеля, его концов, условий окружающей среды и других внешних воздействий.
Вернуться к таблице содержания ↑
2. Системы электропроводки: методы установки
Стандарт определяет ряд методов установки, которые представляют различные условия установки. В следующих таблицах они разделены на группы и определены буквами от A до G , которые определяют, как читать таблицу допустимой токовой нагрузки в проводниках (см. Приложение 1)
Если используются несколько методов монтажа вдоль длина системы электропроводки, необходимо выбрать методы, для которых условия тепловыделения наименее благоприятны .
В стандарте нет четкого положения об определении поперечного сечения проводников внутри низковольтных распределительных щитов. Однако стандарт IEC 60439-1 определяет токи (используемые для испытаний на превышение температуры) для медных проводников с ПВХ изоляцией.
Таблица 2 — Группа установки в зависимости от типа кабеля
Группа установки | Тип кабеля | ||||
Изолированные жилы | Одножильные кабели | Многожильные кабели | |||
A1) в теплоизолированной стене | • | • | |||
(A1) в кабелепроводе в теплоизолированной стене | • | • | |||
3 (A1-A1-A1-A1-A1-A1-A1-A1-A1-A1- in) теплоизолированная стена | • | ||||
(B1-B2) в водоводе на деревянной стене | • | • | • | ||
(C) 9058 на деревянной стене | • | • | |||
(C) закреплен на деревянной стене | • | • | |||
(D) в воздуховодах в земле | • | • | |||
(E) на открытом воздухе | • | ||||
(F) на открытом воздухе | • | • |
Подробное описание каждой группы установки см. В Приложении 1 ниже.
Вернуться к таблице содержания ↑
3. Группы цепей
Таблицы, в которых описаны методы установки, также относятся к конкретным таблицам, которые используются для определения поправочных коэффициентов, связанных с группой цепей и кабелепроводов.
Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем одного многожильного кабеля, которые будут использоваться с допустимой нагрузкой по току
Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем один многожильный кабель должен использоваться с допустимой нагрузкой по току
Эти коэффициенты применимы к одинаковым группам кабелей с одинаковой нагрузкой.Если горизонтальные зазоры между соседними кабелями в два раза превышают их общий диаметр, коэффициент уменьшения не требуется.
Те же коэффициенты применяются к:
- Группы из двух или трех одножильных кабелей;
- Многожильные кабели
Если система состоит как из двухжильных, так и из трехжильных кабелей, общее количество кабелей принимается как количество цепей, и соответствующий коэффициент применяется к таблицам для двух нагруженных проводников. для двухжильных кабелей и в таблицы для трех нагруженных жил для трехжильных кабелей.
Если группа состоит из n одножильных кабелей , она может рассматриваться либо как n / 2 цепей из двух нагруженных проводников, либо как n / 3 контуров из трех нагруженных проводников. Приведенные значения усреднены по диапазону размеров проводов и типам установки, включенным в таблицы, общая точность табличных значений находится в пределах 5%.
Для некоторых установок и других методов, не предусмотренных в приведенной выше таблице, может оказаться целесообразным использовать коэффициенты, рассчитанные для конкретных случаев.
Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабели, проложенные непосредственно в земле, метод D — одножильные или многожильные кабели
Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабелей прокладка непосредственно в грунте. Метод D — одножильные или многожильные кабели.
Приведенные значения относятся к глубиной установки 0,7 м и тепловому сопротивлению грунта 2,5 км / Вт . Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах.Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10% .
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287-2-1.
Рисунок 2 — Группирование цепей вместе приводит к уменьшению допустимой нагрузки по току (применение поправочного коэффициента)
Таблица 5 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи, кабели, проложенные в каналах, метод заземления D multi -жильные кабели в односторонних каналах
Таблица 5 — Многожильные кабели в односторонних каналах Таблица 5 — Одножильные кабели в односторонних каналах
Приведенные значения относятся к глубине прокладки 0,7 м и тепловому воздействию почвы. удельное сопротивление 2,5 км / Вт.Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах. Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10%.
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287.
Таблица 6 — Коэффициенты уменьшения для групп, состоящих из более чем одного многожильного кабеля, должны применяться к эталонным номинальным значениям для многожильных кабелей бесплатно. воздух — метод установки E
Таблица 6 — Коэффициенты уменьшения для групп, состоящих из более чем одного многожильного кабеля, которые должны применяться к эталонным номинальным значениям для многожильных кабелей на открытом воздухе — способ установки E
(1) Значения даны для вертикальных расстояний между лотками 300 мм и не менее 20 мм между лотками и стеной.Для более близкого расстояния коэффициенты следует уменьшить.
(2) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную. Для более близкого расстояния коэффициенты должны быть уменьшены
Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе — метод установки F
Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе — метод установки Коэффициенты F
(1) даны для отдельных слоев кабелей (или групп трилистников), как показано в таблице, и не применяются, когда кабели проложены более чем в одном слое, соприкасаясь друг с другом.Значения для таких установок могут быть значительно ниже и должны определяться соответствующим методом.
(2) Значения даны для вертикального расстояния между противнями 300 мм. для более близкого расстояния коэффициенты следует уменьшить.
(4) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную, и не менее 20 мм между лотком и любой стеной. для более близкого расстояния коэффициенты следует уменьшить.
(5) для цепей, имеющих более одного параллельного кабеля на фазу, каждый трехфазный набор проводников следует рассматривать как цепь для целей данной таблицы.
Вернуться к таблице содержания ↑ v
4. Температура окружающей среды
Температура окружающей среды напрямую влияет на размер проводов. Следует учитывать температуру воздуха вокруг кабелей (установка на открытом воздухе) и температуры земли для подземных кабелей.
Следующие таблицы, взятые из стандарта IEC 60364-5-52, могут использоваться для определения поправочного коэффициента, применяемого для температур от 10 до 80 ° C . Во всех этих таблицах базовая температура воздуха составляет 30 ° C, а температура земли — 20 ° C.
Не следует путать температуру окружающей среды вокруг кабелей с температурой, принимаемой во внимание для защитных устройств, то есть внутренней температурой распределительного щита, в котором установлены эти защитные устройства.
Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, применяемые к допустимой токовой нагрузке для кабелей в воздухе (1) .
Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе
При более высоких температурах окружающей среды следует проконсультироваться с производителем.
Таблица 9 — Таблица поправочных коэффициентов для температур окружающей среды грунта, отличных от 20 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле
Таблица 9 — Табличные поправочные коэффициенты для температур окружающей среды почвы, кроме 20 ° C применяется к допустимой токовой нагрузке для кабелей в кабельных каналах в земле
Таблица 10 — Таблица поправочного коэффициента для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 К.м / Вт, применяемые к допустимой нагрузке по току для эталонного метода D
Таблица 10 — Таблица 10 — поправочный коэффициент для кабелей в подземных каналах для удельного теплового сопротивления почвы, отличный от 2,5 км / Вт, который применяется к допустимой нагрузке по току для эталонного метода D
Приведенные поправочные коэффициенты усреднены по диапазону размеров проводов и типам установки, приведенным в таблицах. Общая точность поправочных коэффициентов находится в пределах ± 5% . Поправочные коэффициенты применимы к кабелям, протянутым в заглубленные каналы; для кабелей, проложенных непосредственно в земле, поправочные коэффициенты для теплового сопротивления менее 2,5 К.м / Вт будет выше.
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287 . Поправочные коэффициенты применимы к каналам, проложенным на глубине до 0,8 м.
Вернуться к таблице содержания ↑
5. Риски взрыва
В установках, где существует риск взрыва (наличие, обработка или хранение материалов, которые являются взрывоопасными или имеют низкую температуру вспышки, включая присутствие взрывчатых веществ пыли), системы электропроводки должны иметь соответствующую механическую защиту n, а допустимая нагрузка по току будет подвергаться понижающему коэффициенту.
Описание и правила установки приведены в стандарте IEC 60079.
Интересное чтение:
Почему оборудование подстанции выходит из строя и почему стоит подумать об этом до отказа
Вернуться к таблице содержимого ↑
6. Параллельные проводники
До тех пор, пока расположение проводников соответствует правилам группировки, допустимая нагрузка по току в системе проводки может считаться равной сумме допустимой нагрузки по току каждого проводника к которому применяются поправочные коэффициенты, связанные с группой проводников.
Рисунок 3 — Параллельные проводники и кабели (фото: nktphotonics.com)
Вернуться к таблице содержания ↑
7. Общий поправочный коэффициент
Когда известны все конкретные поправочные коэффициенты, можно определить глобальный коэффициент . поправочный коэффициент (f) , который равен произведению всех конкретных коэффициентов. Затем процедура состоит из расчета теоретической допустимой нагрузки по току Iz th системы электропроводки:
Iz th = I B / f
Знание Iz th затем позволяет ссылаться на таблицы на допустимые токи для определения необходимого сечения.
Считать из столбца, соответствующего типу проводника и эталонному методу. Затем просто выберите в таблице значение допустимой нагрузки по току непосредственно над значением Iz th , чтобы найти поперечное сечение.
Обычно допускается отклонение в 5% от значения iz. например, рабочий ток I B 140 A приведет к выбору сечения 35 мм 2 с допустимой нагрузкой по току 169 A .Применение этого допуска позволяет выбрать меньшее поперечное сечение 25 мм 2 , которое может выдерживать ток 145 A (138 + 0,5% = 145 A) .
Таблица 11 — Максимальный ток в амперах
Таблица 11 — Максимальный ток в амперах
Где (1)
- ПВХ 2: изоляция из ПВХ, 2 нагруженных проводника
- ПВХ 3: ПВХ изоляция, 3 нагруженных проводника
- PR 2: изоляция XLPE или EPR, 2 нагруженных проводника
- PR 3: изоляция XLPE или EPR, 3 нагруженных проводника.
Используйте PVC 2 или PR 2 для однофазных или двухфазных цепей и PVC 3 или PR 3 для трехфазных цепей.
Вернуться к таблице содержимого ↑
7.1 Пример
Определение трехфазной цепи, образующей связь между главным распределительным щитом и вторичным распределительным щитом.
Гипотезы
- Оценка нагрузок позволила рассчитать рабочий ток проводников: I B = 600 A
- Система электропроводки состоит из одножильных медных кабелей с изоляцией PR
- Жилы устанавливаются в перфорированном кабельном канале в контакте друг с другом.
- Предпочтение отдается установке кабелей параллельно, чтобы ограничить поперечное сечение устройства до 150 мм 2
Решение
Установка одножильных кабелей в перфорированном кабельном лотке соответствует эталонному методу F
Таблица 12 — Выдержка из таблицы методов установки
Если достаточно одного провода на фазу, коррекция не требуется.Если необходимы два проводника на фазу, следует применить понижающий коэффициент 0,88.
Таблица 13 — Выдержка из таблицы с поправочными коэффициентами для групп
Таким образом, теоретическое значение Iz th будет определяться следующим образом: Iz th = I B / F = 600 / 0,88 = 682 A , т.е. 341 А на провод .
Таблица 14 — Считывание из таблицы допустимых значений тока
Для проводника PR 3 в эталонном методе f и допустимой нагрузке по току 382 A (значение непосредственно выше 341 A) в таблице указано поперечное сечение из 120 мм 2 .
Вернуться к таблице содержания ↑
8. Поперечное сечение нейтрального провода
В принципе, нейтраль должна быть того же поперечного сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 (25 мм 2 алюмин.) Сечение нейтрали можно уменьшить до сечения / 2.
Однако это уменьшение недопустимо, если:
- На практике нагрузки не сбалансированы.
- Содержание третьей гармоники превышает 15%.
Если это содержание на больше, чем 33% , сечение токоведущих жил многожильных кабелей выбирается путем увеличения тока I B . Стандарт IEC 60364-5-52 дает таблицу, показывающую поправочные коэффициенты в соответствии с THD (полное гармоническое искажение), с последующим примером определения допустимой токовой нагрузки кабеля.
Таблица 15 — Таблица коэффициентов уменьшения токов гармоник в 4- и 5-жильных кабелях
Таблица 15 — Таблица коэффициентов уменьшения токов гармоник в четырех- и пятижильных кабелях (IEC 60364-5-52)
Вернуться к таблице содержимого ↑
8.1 Примеры
Применение понижающих коэффициентов для гармонических токов (IEC 60352-5-52)
Рассмотрим трехфазную цепь с расчетной нагрузкой 39 А , которая должна быть установлена с использованием четырехжильного кабеля с изоляцией из ПВХ, прикрепленного к стене. , способ установки C . Кабель 6 мм 2 с медными жилами имеет допустимую нагрузку по току 41 A и, следовательно, подходит, если в цепи отсутствуют гармоники.
Если присутствует 20% третьей гармоники , то применяется понижающий коэффициент 0,86, и расчетная нагрузка становится: 39 / 0,86 = 45 A .Для этой нагрузки необходим кабель 10 мм 2 .
Если присутствует 40% третьей гармоники , выбор размера кабеля основан на токе нейтрали, который составляет: 39 × 0,4 × 3 = 46,8 A , и применяется понижающий коэффициент 0,86 , что приводит к расчетной нагрузке: 46,8 / 0,86 = 54,4 А . Для этой нагрузки подходит кабель 10 мм 2 .
Если присутствует 50% третьей гармоники , размер кабеля снова выбирается на основе тока нейтрали, который составляет: 39 × 0,5 × 3 = 58,5 A .В этом случае номинальный коэффициент равен 1 , и требуется кабель 16 мм, 2 .
Выбор всех вышеперечисленных кабелей основан на допустимой нагрузке на кабель; падение напряжения и другие аспекты конструкции не учитывались.
Вернуться к таблице содержимого ↑
Приложение 1 — «Группы установки» в зависимости от типа кабеля
Приложение 1 — «Группы установки» в соответствии с типом кабеля
Вернуться к таблице содержимого ↑
Источники :
Онлайн-калькуляторы и таблицы размеров проводов
Этот сайт предлагает множество простых в использовании калькуляторов и диаграмм силы тока проводов, которые помогут вам правильно определить размеры.
провод и кабелепровод в соответствии с NEC.Посетите калькуляторы и таблицы
страницы для полного списка ресурсов.
Калькулятор размера провода
Введите информацию ниже, чтобы рассчитать соответствующий размер провода.
Размер проводника
Национальный электротехнический кодекс устанавливает требования к выбору электрических
провод для предотвращения перегрева, пожара и других опасных ситуаций. Правильный размер
Wire для многих различных приложений может стать сложным и непосильным.Сила тока — это мера электрического
ток, протекающий по цепи. Номинальная допустимая нагрузка на провод определяет силу тока, которую провод может безопасно
ручка. Чтобы правильно выбрать размер провода для вашего приложения, необходимо знать допустимую нагрузку на провод.
Однако множество различных внешних факторов, таких как температура окружающей среды и изоляция проводника, играют роль в определении.
токовая нагрузка провода.
Допустимая нагрузка на провод рассчитывается таким образом, чтобы не превышать определенного повышения температуры при определенной электрической нагрузке.Нагрев проводника напрямую связан с его
I 2 R потери в цепи. Длина проводника прямо пропорциональна его сопротивлению. Однако площадь поперечного сечения проводника также может быть изменена, чтобы изменить
сопротивление проводника. При увеличении поперечного сечения проводника (или увеличении размера провода) сопротивление уменьшается, а допустимая допустимая токовая нагрузка увеличивается. При выборе размеров проводов следует руководствоваться здравым смыслом
потому что большие проводники могут стать дорогостоящими и сложными в установке, в то время как небольшие проводники могут представлять потенциальную опасность.Используйте калькулятор, указанный выше, для определения размера провода для основных применений или просмотрите некоторые диаграммы токовой нагрузки проводов для значений токовой нагрузки проводов.
Падение напряжения
Падение напряжения может стать проблемой для инженеров и электриков при выборе кабеля для длинных проводов. Падение напряжения в цепи может произойти из-за использования слишком маленького сечения провода или слишком большой длины кондуктора. Для длинных проводов, где может возникнуть падение напряжения, используйте калькулятор падения напряжения для определения падения напряжения и калькулятор расстояния цепи для определения максимальной длины цепи.
Электродвигатели
Существует множество различных типов электродвигателей, от однофазных до трехфазных двигателей переменного тока, двигателей постоянного и низкого напряжения, синхронных и асинхронных двигателей. При проектировании фидера или ответвительной цепи с одним или несколькими электродвигателями необходимо учитывать несколько важных моментов. Пусковой ток двигателя иногда может достигать 7 ампер полной нагрузки двигателя.Сечение провода двигателя должно быть рассчитано таким образом, чтобы выдерживать бросковый ток, а также выдерживать постоянный ток полной нагрузки двигателя. При проектировании фидера и параллельных цепей двигателя необходимо учитывать также защиту обмоток двигателя и тепловые характеристики. Просмотрите калькулятор размера провода двигателя или таблицу размеров провода двигателя, чтобы получить информацию о размерах проводов и устройствах защиты цепи для двигателей.
На этом сайте есть много калькуляторов размеров проводов и размеров проводов.
диаграммы, которые помогут вам правильно выбрать размер провода в соответствии с нормами.Посетите Условия использования и Политику конфиденциальности этого сайта. Ваше мнение очень ценится. Сообщите нам, как мы можем улучшить.
Калькулятор падения напряжения
Это калькулятор для оценки падения напряжения в электрической цепи. Вкладка «Данные NEC» рассчитывается на основе данных сопротивления и реактивного сопротивления из Национального электрического кодекса (NEC). Вкладка «Расчетное сопротивление» рассчитывается на основе данных сопротивления, рассчитанных на основе сечения провода. Щелкните вкладку «Другое», чтобы использовать настроенные данные сопротивления или импеданса, например, данные других стандартов или производителей проводов.
Когда электрический ток проходит по проводу, он толкается электрическим потенциалом (напряжением), и ему необходимо преодолеть определенный уровень противоположного давления, создаваемого проводом. Падение напряжения — это величина потери электрического потенциала (напряжения), вызванная противоположным давлением провода. Если ток переменный, такое противоположное давление называется импедансом. Импеданс — это вектор или двумерная величина, состоящая из сопротивления и реактивного сопротивления (реакция созданного электрического поля на изменение тока).Если ток прямой, противоположное давление называется сопротивлением.
Чрезмерное падение напряжения в цепи может привести к мерцанию или тусклому горению ламп, плохому нагреву нагревателей и перегреву двигателей, превышающему нормальный, и перегоранию. Рекомендуется, чтобы падение напряжения было менее 5% при полной нагрузке. Этого можно добиться, выбрав правильный провод, а также позаботившись об использовании удлинителей и аналогичных устройств.
Существует четыре основных причины падения напряжения:
Во-первых, это выбор материала для проволоки.Серебро, медь, золото и алюминий относятся к числу металлов с лучшей электропроводностью. Медь и алюминий являются наиболее распространенными материалами для изготовления проводов из-за их относительно низкой цены по сравнению с серебром и золотом. Медь — лучший проводник, чем алюминий, и будет иметь меньшее падение напряжения, чем алюминий, для данной длины и размера провода.
Размер провода — еще один важный фактор при определении падения напряжения. Провода большего диаметра (большего диаметра) будут иметь меньшее падение напряжения, чем провода меньшего диаметра той же длины.В американском калибре проволоки каждое уменьшение на 6 калибра удваивает диаметр провода, а каждое уменьшение на 3 калибра удваивает площадь поперечного сечения провода. В метрической шкале калибра калибр в 10 раз превышает диаметр в миллиметрах, поэтому диаметр метрической проволоки 50 калибра составляет 5 мм.
Еще одним важным фактором падения напряжения является длина провода. Более короткие провода будут иметь меньшее падение напряжения, чем более длинные провода того же диаметра. Падение напряжения становится важным, когда длина провода или кабеля становится очень большой.Обычно это не проблема в цепях внутри дома, но может стать проблемой при прокладке проводов к хозяйственной постройке, скважинному насосу и т. Д.
Наконец, величина передаваемого тока может влиять на уровни падения напряжения; увеличение тока через провод приводит к увеличению падения напряжения. Пропускная способность по току часто упоминается как допустимая сила тока, то есть максимальное количество электронов, которое может быть вытолкнуто за один раз — это слово сокращенно от ампера.
Допустимая нагрузка на провод зависит от ряда факторов.Основной материал, из которого сделана проволока, конечно, является важным ограничивающим фактором. Если по проводу передается переменный ток, скорость чередования может повлиять на допустимую нагрузку. Температура, при которой используется провод, также может влиять на допустимую нагрузку.
Кабели
часто используются в связках, и когда они соединяются вместе, общее тепло, которое они выделяют, влияет на допустимую нагрузку и падение напряжения. По этой причине существуют строгие правила связывания кабелей.
При выборе кабеля руководствуется двумя основными принципами. Во-первых, кабель должен выдерживать текущую нагрузку без перегрева. Он должен быть в состоянии сделать это в самых экстремальных температурных условиях, с которыми он может столкнуться в течение своего срока службы. Во-вторых, он должен обеспечивать достаточно надежное заземление, чтобы (i) ограничить до безопасного уровня напряжение, которому подвергаются люди, и (ii) позволить току короткого замыкания сработать с предохранителем за короткое время.
Расчет падения напряжения
Закон Ома — это очень простой закон для расчета падения напряжения:
В падение = I · R
где:
I: ток через провод, измеренный в амперах
R: сопротивление проводов, измеренное в Ом
Сопротивление проводов часто измеряется и выражается как удельное сопротивление длины, обычно в единицах Ом на километр или Ом на 1000 футов.Также провод переключается. Таким образом, формула для однофазной цепи или цепи постоянного тока принимает следующий вид:
V падение = 2 · I · R · L
Формула для трехфазной цепи принимает следующий вид:
В падение = √3 · I · R · L
где:
I: ток через провод
R: удельное сопротивление проводов на длину
L: длина в одну сторону
Типовые сечения проводов AWG
American Wire Gauge (AWG) — это система калибров для проволоки, используемая преимущественно в Северной Америке для измерения диаметров круглой, сплошной, цветной и электропроводящей проволоки.Ниже приводится список типичных проводов AWG и их размеров:
AWG | Диаметр | витков провода | Площадь | Сопротивление меди | ||||
дюйм | мм | на дюйм | на см | килограмм | мм 2 | Ом / км | Ом / 1000 футов | |
0000 (4/0) | 0.4600 | 11,684 | 2,17 | 0,856 | 212 | 107 | 0,1608 | 0,04901 |
000 (3/0) | 0,4096 | 10,404 | 2,44 | 0,961 | 168 | 85,0 | 0,2028 | 0,06180 |
00 (2/0) | 0.3648 | 9,266 | 2,74 | 1,08 | 133 | 67,4 | 0,2557 | 0,07793 |
0 (1/0) | 0,3249 | 8,252 | 3,08 | 1,21 | 106 | 53,5 | 0,3224 | 0,09827 |
1 | 0,2893 | 7.348 | 3,46 | 1,36 | 83,7 | 42,4 | 0,4066 | 0,1239 |
2 | 0,2576 | 6.544 | 3,88 | 1,53 | 66,4 | 33,6 | 0,5127 | 0,1563 |
3 | 0,2294 | 5,827 | 4.36 | 1,72 | 52,6 | 26,7 | 0,6465 | 0,1970 |
4 | 0,2043 | 5,189 | 4,89 | 1,93 | 41,7 | 21,2 | 0,8152 | 0,2485 |
5 | 0,1819 | 4,621 | 5,50 | 2.16 | 33,1 | 16,8 | 1.028 | 0,3133 |
6 | 0,1620 | 4,115 | 6,17 | 2,43 | 26,3 | 13,3 | 1,296 | 0,3951 |
7 | 0,1443 | 3,665 | 6,93 | 2,73 | 20.8 | 10,5 | 1,634 | 0,4982 |
8 | 0,1285 | 3,264 | 7,78 | 3,06 | 16,5 | 8,37 | 2,061 | 0,6282 |
9 | 0,1144 | 2,906 | 8,74 | 3,44 | 13,1 | 6.63 | 2,599 | 0,7921 |
10 | 0,1019 | 2,588 | 9,81 | 3,86 | 10,4 | 5,26 | 3,277 | 0,9989 |
11 | 0,0907 | 2.305 | 11,0 | 4,34 | 8,23 | 4,17 | 4.132 | 1,260 |
12 | 0,0808 | 2,053 | 12,4 | 4,87 | 6,53 | 3,31 | 5,211 | 1,588 |
13 | 0,0720 | 1,828 | 13,9 | 5,47 | 5,18 | 2,62 | 6.571 | 2.003 |
14 | 0,0641 | 1,628 | 15,6 | 6,14 | 4,11 | 2,08 | 8,286 | 2,525 |
15 | 0,0571 | 1,450 | 17,5 | 6,90 | 3,26 | 1,65 | 10,45 | 3,184 |
16 | 0.0508 | 1,291 | 19,7 | 7,75 | 2,58 | 1,31 | 13,17 | 4,016 |
17 | 0,0453 | 1,150 | 22,1 | 8,70 | 2,05 | 1,04 | 16,61 | 5,064 |
18 | 0,0403 | 1.024 | 24,8 | 9,77 | 1,62 | 0,823 | 20,95 | 6.385 |
19 | 0,0359 | 0,912 | 27,9 | 11,0 | 1,29 | 0,653 | 26,42 | 8,051 |
20 | 0,0320 | 0,812 | 31.3 | 12,3 | 1,02 | 0,518 | 33,31 | 10,15 |
21 | 0,0285 | 0,723 | 35,1 | 13,8 | 0,810 | 0,410 | 42,00 | 12,80 |
22 | 0,0253 | 0,644 | 39,5 | 15.5 | 0,642 | 0,326 | 52,96 | 16,14 |
23 | 0,0226 | 0,573 | 44,3 | 17,4 | 0,509 | 0,258 | 66,79 | 20,36 |
24 | 0,0201 | 0,511 | 49,7 | 19,6 | 0.404 | 0,205 | 84,22 | 25,67 |
25 | 0,0179 | 0,455 | 55,9 | 22,0 | 0,320 | 0,162 | 106,2 | 32,37 |
26 | 0,0159 | 0,405 | 62,7 | 24,7 | 0,254 | 0.129 | 133,9 | 40,81 |
27 | 0,0142 | 0,361 | 70,4 | 27,7 | 0,202 | 0,102 | 168,9 | 51,47 |
28 | 0,0126 | 0,321 | 79,1 | 31,1 | 0,160 | 0,0810 | 212.9 | 64,90 |
29 | 0,0113 | 0,286 | 88,8 | 35,0 | 0,127 | 0,0642 | 268,5 | 81,84 |
30 | 0,0100 | 0,255 | 99,7 | 39,3 | 0,101 | 0,0509 | 338,6 | 103.2 |
31 | 0,00893 | 0,227 | 112 | 44,1 | 0,0797 | 0,0404 | 426,9 | 130,1 |
32 | 0,00795 | 0,202 | 126 | 49,5 | 0,0632 | 0,0320 | 538,3 | 164,1 |
33 | 0.00708 | 0,180 | 141 | 55,6 | 0,0501 | 0,0254 | 678,8 | 206,9 |
34 | 0,00630 | 0,160 | 159 | 62,4 | 0,0398 | 0,0201 | 856,0 | 260,9 |
35 | 0,00561 | 0.143 | 178 | 70,1 | 0,0315 | 0,0160 | 1079 | 329,0 |
36 | 0,00500 | 0,127 | 200 | 78,7 | 0,0250 | 0,0127 | 1361 | 414,8 |
37 | 0,00445 | 0,113 | 225 | 88.4 | 0,0198 | 0,0100 | 1716 | 523,1 |
38 | 0,00397 | 0,101 | 252 | 99,3 | 0,0157 | 0,00797 | 2164 | |
39 | 0,00353 | 0,0897 | 283 | 111 | 0.0125 | 0,00632 | 2729 | 831,8 |
40 | 0,00314 | 0,0799 | 318 | 125 | 0,00989 | 0,00501 | 3441 | 1049 |
Руководство по эксплуатации кабельного лотка — версия 2014
% PDF-1.7
%
226 0 объект
>>> / Метаданные 256 0 R / PageLabels 213 0 R / Страницы 214 0 R / Тип / Каталог >>
эндобдж
256 0 объект
> поток
11.08.5532019-01-03T13: 22: 43.645-05: 00QuarkXPress (R) 9.3 Руководство по эксплуатации кабельного лотка — версия 2014 г. : 002019-01-03T13: 21: 37.000-05: 002016-08-01T22: 02: 37.000-04: 00application / pdf
2019-01-03T13: 24: 10.445-05: 00
uuid: aaa2d32c-8e43-2c4f-b59a-f0feab9273dduuid: 5f4bc834-585f-4b46-a7c4-22ceb6029420 %% DocumentProcessColors: Голубой пурпурный желтый черный
%% EndComments
конечный поток
эндобдж
213 0 объект
>] >>
эндобдж
214 0 объект
>
эндобдж
215 0 объект
>
эндобдж
216 0 объект
>
эндобдж
217 0 объект
>
эндобдж
218 0 объект
>
эндобдж
219 0 объект
>
эндобдж
220 0 объект
>
эндобдж
221 0 объект
>
эндобдж
222 0 объект
>
эндобдж
223 0 объект
>
эндобдж
148 0 объект
> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page / u2pMat [1 0 0 -1 0 792] / xb1 0 / xb2 612 / xt1 0 / xt2 612 / yb1 0 / yb2 792 / yt1 0 / yt2 792 >>
эндобдж
150 0 объект
> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page / u2pMat [1 0 0 -1 0 792] / xb1 0 / xb2 612 / xt1 0 / xt2 612 / yb1 0 / yb2 792 / yt1 0 / yt2 792 >>
эндобдж
152 0 объект
> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page / u2pMat [1 0 0 -1 0 792] / xb1 0 / xb2 612 / xt1 0 / xt2 612 / yb1 0 / yb2 792 / yt1 0 / yt2 792 >>
эндобдж
154 0 объект
> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page / u2pMat [1 0 0 -1 0 792] / xb1 0 / xb2 612 / xt1 0 / xt2 612 / yb1 0 / yb2 792 / yt1 0 / yt2 792 >>
эндобдж
156 0 объект
> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page / u2pMat [1 0 0 -1 0 792] / xb1 0 / xb2 612 / xt1 0 / xt2 612 / yb1 0 / yb2 792 / yt1 0 / yt2 792 >>
эндобдж
157 0 объект
> поток
HWmsF; 5 | f_daL2I5LtΜo! Wng $ KRR / e%
.