Сечение и диаметр проводов по мощности таблица: Выбор мощности, тока и сечения проводов и кабелей

Содержание

Выбор мощности, тока и сечения проводов и кабелей


Выбор мощности, тока и сечения проводов и кабелей

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки ( открытой проводки) на сечение провода:

  • для медного провода 10 ампер на миллиметр квадратный,
  • для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.


Медные жилы, проводов и кабелей


Алюминиевые жилы, проводов и кабелей


Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.



Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.


Допустимый длительный ток для проводов с медными жилами

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных.

* Токи относятся к проводам и кабелям с нулевой жилой и без нее.


Допустимый длительный ток для кабелей с алюминиевыми жилами

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.


Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки.

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях.

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

  • Медь, U = 220 B, одна фаза, двухжильный кабель

Р, кВт

1

2

3

3,5

4

6

8

I, A

4,5

9,1

13,6

15,9

18,2

27,3

36,4

Сечение токопроводящей жилы, мм2

1

1

1,5

2,5

2,5

4

6

Макс. допустимая длина кабеля при указанном сечении, м*

34,6

17,3

17,3

24,7

21,6

23

27

  • Медь, U = 380 B, три фазы, трехжильный кабель

Р, кВт

6

12

15

18

21

24

27

35

I, A

9,1

18,2

22,8

27,3

31,9

36,5

41

53,2

Сечение токопроводящей жилы, мм2

1,5

2,5

4

4

6

6

10

10

Макс. допустимая длина кабеля при указанном сечении, м*

50,5

33,6

47,6

39,7

51

44,7

66,2

51

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля


Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

0,35

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

0,75

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

многопроволочных (гибких)

0,35

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах;

2,5

4

вводы от воздушной линии

под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

многопроволочных (гибких)

0,35

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

Продукция:

Услуги:


НОВИНКА

ECOLED-100-105W-
13600-D120 CITY
Светильник используют для освещения территорий предприятий, автостоянок, дворов, складских и производственных помещений.
ПОДРОБНЕЕ

Таблица мощности проводов: рассмотрим подробно

Упрощенная таблица для выбора сечения проводника по номинальной мощности

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.

Что такое cosα

  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.

Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).

На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников

  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.

Таблица выбора сечения провода для медных проводников

Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.

Таблица поправочных температурных коэффициентов

  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.

Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.

Калькулятор расчета сечения кабеля по диаметру

Правильный выбор электрического кабеля для питания электрооборудования – залог длительной и стабильной
работы установок. Использование неподходящего провода влечет за собой серьезные негативные последствия.

Физика процесса порчи электрической линии вследствие использования неподходящего провода такова: из-за
недостатка места в кабельной жиле для свободного передвижения электронов повышается плотность тока; это
приводит к избыточному выделению энергии и повышению температуры металла. Когда температура становится
слишком высокой, оплавляется изоляционная оболочка линии, что может стать причиной пожара.

Чтобы избежать неприятностей, необходимо использовать кабель с жилами подходящей толщины. Один из способов
определить площадь сечения кабеля – отталкиваться от диаметра его жил.

Калькулятор расчета сечения по диаметру

Для простоты вычислений разработан калькулятор расчета сечения кабеля по диаметру. В его основе лежат
формулы, по которым можно найти площадь сечения одножильных и многожильных проводов.

Измерять сечение нужно измеряя жилу без изоляции иначе нечего не получится.

Когда речь идет о вычислении десятков и сотен значений, онлайн-калькулятор способен существенно упростить жизнь
электрикам и проектировщикам электрических сетей за счет удобства и повышения скорости расчетов. Достаточно
ввести значение диаметра жилы, а при необходимости указать количество проволок, если кабель многожильный, и
сервис покажет искомое сечение провода.

Формула расчета

Вычислить площадь сечения электрического провода можно разными способами в зависимости от его типа. Для всех
случаев применяется единая формула расчета сечения кабеля по диаметру. Она имеет следующий вид:

D – диаметр жилы.

Диаметр жилы обычно указывается на оплетке провода или на общем ярлыке с другими техническими характеристиками.
При необходимости определить это значение можно двумя способами: с применением штангенциркуля и вручную.

Первым способом измерить диаметр жилы очень просто. Для этого ее необходимо очистить от изоляционной оболочки,
после чего воспользоваться штангенциркулем. Значение, которое он покажет, и есть диаметр жилы.

Если провод многожильный, необходимо распустить пучок, пересчитать проволоки и измерить штангенциркулем только
одну из них. Определять диаметр пучка целиком смысла нет – такой результат будет некорректным из-за наличия
пустот. В этом случае формула расчета сечения будет иметь вид:

D – диаметр жилы;

а – количество проволок в жиле.

При отсутствии штангенциркуля диаметр жилы можно определить вручную. Для этого ее небольшой отрезок необходимо
освободить от изоляционной оболочки и намотать на тонкий цилиндрический предмет, например, на карандаш. Витки
должны плотно прилегать друг к другу. В этом случае формула вычисления диаметра жилы провода выглядит так:

L – длина намотки проволоки;

N – число полных витков.

Чем больше длина намотки жилы, тем точнее получится результат.

Выбор по таблице

Зная диаметр провода, можно определить его сечение по готовой таблице зависимости. Таблица расчета сечения
кабеля по диаметру жилы выглядит таким образом:

Диаметр проводника, ммСечение проводника, мм2
0.80.5
10.75
1.11
1.21.2
1.41.5
1.62
1.82.5
23
2.34
2.55
2.86
3.28
3.610
4.516

Когда сечение известно, можно определить значения допустимых мощности и тока для медного или алюминиевого
провода. Таким образом удастся выяснить, на какие параметры нагрузки рассчитана токопроводящая жила. Для этого
понадобится таблица зависимости сечения от максимального тока и мощности.

В воздухе (лотки,
короба,пустоты,каналы)
Сечение,кв.ммВ земле
Медные жилыАлюминиевые жилыМедные жилыАлюминиевые жилы
Ток. АМощность, кВтТон. АМощность, кВтТок, АМощность, кВтТок. АМощность,кВт
220 (В)380 (В)220(В)380 (В)220(В)380 (В)220(В)
194.117.51,5775.917.7
355.516.4194.117.57,5388.375796.3
357.773775.917.744910.733.S388.4
*29.777.63777166013.339.54610.1
5517.136.7479.777.6109019.8S9.77015.4
7516.549.36013.739.51611575375.79019,8
9570,967.57516.549.3751503398.711575.3
17076.478.99019.859.73518039.6118.514030.8
14531.995.411074.777.45077549314817538.5
ISO39.6118.414030.897.17077560.518171046.7
77048.4144.817037.4111.99531077.6717.775556.1
76057,7171.170044131,617038584.7753.47956S
30567.1700.773551.7154.615043595.7786.333573.7
35077730.377059.4177.718550011037938584.7

Перевод ватт в киловатты

Чтобы правильно воспользоваться таблицей зависимости сечения провода от мощности, важно правильно перевести ватты
в киловатты.

1 киловатт = 1000 ватт. Соответственно, чтобы получить значение в киловаттах, мощность в ваттах необходимо
разделить на 1000. Например, 4300 Вт = 4,3 кВт.

Примеры

Пример 1. Необходимо определить значения допустимых тока и мощности для медного провода с
диаметром жилы 2,3 мм. Напряжение питания – 220 В.

В первую очередь следует определить площадь сечения жилы. Сделать это можно по таблице или по формуле. В первом
случае получается значение 4 мм2, во втором – 4,15 мм2.

Расчетное значение всегда более точное, чем табличное.

С помощью таблицы зависимости сечения кабеля от мощности и тока, можно выяснить, что для сечения медной жилы
площадью 4,15 мм2 допустима мощность 7,7 кВт и ток 35 А.

Пример 2. Необходимо вычислить значения тока и мощности для алюминиевого многожильного провода.
Диаметр жилы – 0,2 мм, число проволок – 36, напряжение – 220 В.

В случае с многожильным проводом пользоваться табличными значениями нецелесообразно, лучше применить формулу
расчета площади сечения:

Теперь можно определить значения мощности и тока для многожильного алюминиевого провода сечением 2,26
мм2. Мощность – 4,1 кВт, ток – 19 А.

Расчет сечения кабеля | Таблицы, формулы и примеры

Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

R = ρ · L/S (2),

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Что еще влияет на нагрев проводов

Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16

Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.

Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.

Порядок расчета сечения по мощности

В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:

  • Суммарная мощность всех приборов.
  • Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
  • ПУЭ 7. Правила устройства электроустановок. Издание 7.
  • Материал проводника: медь или алюминий.
  • Тип проводки: открытая или закрытая.

Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:

ΣP = (P₁ + Р₂ + … + Рₙ) · Кс · Кз,

где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:

  • для двух одновременно включенных приборов – 1;
  • для 3-4 – 0,8;
  • для 5-6 – 0,75;
  • для большего количества – 0,7.

Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.

Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм2.

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм2·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

R = ρ · L/S.

Потеря напряжения по длине проводника должна быть не более 5%:

dU = 0,05 · 220 В = 11 В.

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм2. Отсюда диаметр одной жилы должен быть не менее (S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

I = (P · Кс) / (U · cos ϕ).

Для трехфазной сети используется другая формула:

I=P/(U√3cos φ),

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм2. У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, что полностью соответствует указанному требованию.

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм2. У кабеля ABБбШв 4×16 сечение одной жилы равно:

S = π · r2 = 3,14 · (4,5/2)2 = 15,89 мм2.

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

Таблицы и формулы для выбора сечения кабеля

Электроэнергия может вырабатываться генератором на напряжении 6, 10, 18кВ. Далее она идет по шинопроводам или комплектным токопроводам к трансформаторам, которые повышают эту величину до 35-330кВ. Чем выше напряжение, тем дальше эту энергию передавать. Затем уже по ЛЭП электричество идет до потребителей. Там опять трансформируется через понижающие трансформаторы до величины 0,4кВ. И между всеми этими преобразованиями электричество идет по воздушным, кабельным линиям различного напряжения. Выбор сечения этих кабелей отдельный вопрос, который и рассматривается в данной статье.

Если обратиться к основам вопроса, то его сразу можно разделить на две части. Часть первая, выбор сечения в сетях до 1кВ, ну и вторая часть (в отдельной статье) — выбор сечения в сетях выше 1кВ. Кроме того, рассмотрим общий для этих классов напряжения вопрос — определение сечения кабеля по диаметру. Сразу предупреждаю, что впереди много таблиц, но пусть это Вас не пугает, так как порой таблица лучше тысячи слов.

Выбор и расчет сечения кабелей напряжением до 1кВ (для квартиры, дома)

Электрические сети до 1кВ самые многочисленные — это как паутина, которая обвивает всю электроэнергетику и в которой такое бесчисленное множество автоматов, схем и устройств, что голова у неподготовленного человека может пойти кругом. Кроме сетей 0,4кВ промышленных предприятий (заводов, ТЭЦ), к этим сетям относится и проводка в квартирах, коттеджах. Поэтому вопросом выбора и расчета сечения кабеля задаются и люди, которые далеки от электричества — простые владельцы недвижимости.

Кабель используется для передачи электроэнергии от источника к потребителю. В квартирах мы рассматриваем участок от электрического щитка, где установлен вводной автоматический выключатель на квартиру, до розеток, в которые подключаются наши приборы (телевизоры, стиральные машины, чайники). Всё, что отходит от автомата в сторону от квартиры в ведомстве обслуживающей организации, туда лезть мы права не имеем. То есть рассматриваем вопрос прокладки кабелей от вводного автомата до розеток в стене и выключателей на потолке.

В общем случае для освещения берут 1,5 квадрата, для розеток 2,5, а расчет необходим, если требуется подключать что-то нестандартное с большой мощностью — стиралку, бойлер, тэн, плиту.

Выбор сечения кабеля по мощности

Рассматривать далее буду квартиру, так как на предприятиях люди грамотные и всё знают. Чтобы прикинуть мощность необходимо знать мощность каждого электроприемника, сложить их вместе. Единственным минусом при выборе кабеля большего сечения, чем необходимо, является экономическая нецелесообразность. Так как больший кабель больше стоит, но меньше греется. А если выбрать правильно то выйдет и дешевле и греться не будет сильно. В меньшую же сторону округлять нельзя, так как кабель будет больше греться от протекания в нем тока и быстрее придет в неисправное состояние, которое может повлечь за собой неисправность электроприбора и всей проводки.

Первым шагом при выборе сечения кабеля будет определение мощности подключенных к нему нагрузок, а также характер нагрузки — однофазная, трехфазная. Трехфазная это может быть плита в квартире или станок в гараже в частном доме.

Если все приборы уже приобретены, то можно узнать мощность каждого по паспорту, который идет в комплекте, или, зная тип, можно найти в интернете паспорт и посмотреть мощность там.

Если приборы не куплены, но покупать их входит в ваши планы, то можно воспользоваться таблицей, где занесены наиболее популярные приборы. Выписываем значения мощностей и складываем те величины, которые одновременно могут включаться в одну розетку. Приведенные ниже значения носят справочный характер, при расчете следует брать большее значение (если указан диапазон мощности). И всегда лучше посмотреть в паспорт, чем брать средние показатели из таблиц.

ЭлектроприборВероятная мощность, Вт
Стиральная машина4000
Микроволновка1500-2000
Телевизор100-400
ЭкранЭ
Холодильник150-2000
Чайник электрический1000-3000
Обогреватель1000-2500
Плита электрическая1100-6000
Компьютер (тут всякое возможно)400-800
Фен для волос450-2000
Кондиционер1000-3000
Дрель400-800
Шлифовальная машина650-2200
Перфоратор600-1400

Выключатели, которые идут после вводного удобно разделять на группы. Отдельные выключатели для питания плиты, стиралки, бойлера и других мощных приборов. Отдельные для питания освещения отдельных комнат, отдельные для групп розеток комнат. Но это в идеале, в реальности бывает просто вводной и три автомата. Но что-то я отвлекся…

Зная значение мощности, которая будет подключаться к данной розетке мы выбираем по таблице сечение с округлением в большую сторону.

За основу возьму таблицы 1.3.4-1.3.5 из 7-го издания ПУЭ. Эти таблицы даны для проводов, шнуров алюминиевых или медных с резиновой и (или) ПВХ изоляцией. То есть то что мы используем в домашней проводке — к данному типу подходит и любимые электриками медные NYM и ВВГ, и алюминиевый АВВГ.

Кроме таблиц нам понадобятся две формулы активной мощности: для однофазной (P=U*I*cosf) и трехфазной сети (та же формула, только еще умножить на корень из трех, который равен 1,732). Косинус принимаем единице, будет у нас для запаса.

Хотя существуют таблицы, где для каждого типа розетки (розетка для станка, розетка для того, для сего) описан свой косинус. Но больше единицы он быть не может, поэтому не страшно, если примем его 1.

Еще перед взглядом в таблицу стоит определиться как и в каком количестве у нас будут проложены наши провода. Варианты есть следующие — открыто или в трубе. А в трубе можно двух- или трех- или четырех одножильных, одного трехжильного или одного двухжильного. Для квартиры нам на выбор либо два одножильных в трубе — это на 220В, либо четыре одножильных в трубе — на 380В. При прокладке в трубе, необходимо, чтобы процентов 40 оставалось свободного пространства в этой самой трубе, это для отсутствия перегрева. Если прокладывать необходимо провода в другом количестве или другим способом то смело открывайте ПУЭ и пересчитывайте для себя, или же выбирайте не по мощности, а по току, о чем пойдет речь чуть позже в этой статье.

Выбирать можно как медный, так и алюминиевый кабель. Хотя, в последнее время большее применение получает медный, так как для одной и той же мощности потребуется меньшее сечение. К тому же медь имеет лучшие электропроводящие свойства, механическую прочность, меньше подвержена окислению, и плюс ко всему срок службы медного провода выше по сравнению с алюминием.

Определились с тем, медь или алюминий, 220 или 380В? Что же, смотрим в таблицу и выбираем сечение. Но учитываем, что в таблице у нас приведены значения для двух или четырех одножильных проводов в трубе.

Посчитали мы нагрузку например в 6кВт для розетки на 220В и смотрим 5,9 мало, хоть и близко, выбираем 8,3кВт — 4мм2 для меди. А если решили алюминий, то 6,1кВт — тоже 4мм2. Хотя выбрать стоит медь, так как ток при таком же сечении будет допустимый на 10А больше.

Выбор сечения кабеля по току

Суть выбора аналогичная, только теперь у нас есть ПУЭ, где прописаны токи, но сами токи нам неизвестны. Хотя, постойте… Ведь мы знаем мощности приборов и можем по формуле вычислить величины токов. Да и токи могут быть написаны в паспортах на изделия. Аналогично смотрим в таблицы ниже. Это уже таблицы из официальных документов, так что придраться не к чему.

Выбор сечения провода с резиновой или ПВХ изоляцией по допустимому току

Данные провода наиболее распространены, поэтому и приведена эта таблица. В ПУЭ же имеются другие таблицы на все случаи жизни для проводов, кабелей, шнуров с оболочкой и без при прокладке в воде, земле и воздухе. Но это уже частные случаи. Кстати, таблица что приведена при расчете по мощности полностью является частным случаем таблиц выбора по току, которые являются официальными и описаны в ПУЭ.

Расчет кабеля по мощности и длине

В случае, если вы прокладываете кабель на длинное расстояние (ну метров 15 и более), то Вам необходимо учитывать и падение напряжения, которое вызвано сопротивлением кабельной линии.

Чем же неблагоприятно для нас падение напряжения на конце кабельной линии? Для лампочки это ухудшение светового потока при снижении напряжения, или уменьшение срока службы при повышенном напряжении. Существуют допустимые величины отклонения напряжения. Но в основном для электроприборов это плюс минус пять процентов.

В этом случае требуется произвести расчет, и в случае, если напряжение будет ниже номинального на 5% и более, то придется увеличить сечение и заново произвести расчет. Или же воспользоваться очередной таблицей.

Сейчас немного углубимся в матчасть. Падение напряжения для трехфазной сети определяется по формуле:

Эта величина состоит из двух частей, активной(R) и индуктивной(X). Индуктивной частью можно пренебречь в следующих случаях:

  • сеть постоянного тока
  • сеть переменного тока, при cos=1
  • сети, выполненные кабелями или изолированными проводами, проложенными в трубах, если их сечение не больше определенной величины, но не будем углубляться дальше.

В общем индуктивной составляющей пренебрегаем, косинус принимаем равным 1. Значение R определяется по формуле:

где р — удельное сопротивление (для меди — 0,0175, а для алюминия — 0,03)

Далее два варианта расчета:

а) по заданному значению падения напряжения находим допустимое сечение и выбираем следующее большее значение.

б) по заданному значению мощности или тока определяем падение напряжения на участке, и в случае, если оно будет больше 5%, выбираем другое сечение и повторяем расчет.

В вышеприведенных формулах длина в метрах, ток в амперах, напряжение в вольтах, площадь в мм2. Сама величина падения напряжения в относительных величинах, безразмерная. Формулы пригодны для расчетов при отсутствии индуктивной составляющей и косинусе равном 1. Ряд сечений кабелей стандартный. В принципе с полученным значением сечения можно идти на рынок и смотреть, что подойдет с округлением в большую сторону.

А можно воспользоваться таблицами в интернетах, но эти таблицы… Не понятно откуда и для какого случая они построены. Формулы — наше всё!

Определение сечения кабеля по диаметру

Если у Вас есть возможность замерить диаметр жилы кабеля, естественно голой, без изоляции, значит можно определить сечение этой жилы. Опять у нас два пути: формула или таблица. Каждый пусть выбирает, что ему удобнее.

Формула: пидэквадратначетыре. Это все знают. Измеряем диаметр провода (линейка, штангенциркуль, микрометр), повторюсь очищенного. Значение возводим в квадрат, умножаем на число пи (равно 3,14) и делим на 4. Получаем значение сечения. Примерное, ведь погрешности тут и в числе пи и в самом измерении.
Хотите, вот таблица элементарная — измеряем диаметр, смотрим соответствует ли заявленному на бирке сечению.

Если провод многожильный, то либо каждую жилу измеряем, а потом считаем их число. Ну и умножаем число на диаметр одной и далее по схеме, приведенной выше. Либо, если они хорошо скручены в форме круга на конце, производим замер как на одножильном.

Самое популярное


Расчет сечения провода и кабеля

Перед многими покупателями встает вопрос, какого сечения нужен провод или кабель, для выполения определенной задачи?


Расчёт сечения провода, кабеля

Материал изготовления и сечение проводов является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.

Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.

Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели – основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.

Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ).

Основные показатели, определяющие сечение провода:

— Металл, из которого изготовлены токопроводящие жилы.

— Рабочее напряжение, В.

— Потребляемая мощность, кВт и токовая нагрузка, А.

Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления, могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.

Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.

Так, говоря об электропроводке дома или квартиры, будет оптимальным применение: для «розеточных» — силовых групп медного кабеля или провода с сечением жил 2,5 мм² и для осветительных групп – с сечением жил 1,5 мм². Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.

Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм² способны «держать» нагрузку 4,1 кВт (по току – 19 А), 2,5 мм² – 5,9 кВт (27 А), 4 и 6 мм² – свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».

При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм² максимальная нагрузка составляет чуть больше 4 кВт (по току это – 22 А), для жил сечением 4 мм² – не более 6 кВт.

Не последний фактор в расчете сечения жил проводов и кабелей – рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.

Кабели и провода нашего завода полностью соответствует заявленному сечению!

Зависимость сечения кабеля и провода от токовых нагрузок и мощности

При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.

Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум  — только 4 ампера, а медный провода  10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.

Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
















Медные жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033,0
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066,0260171,6















Алюминиевые жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
105011,03925,7
166013,25536,3
258518,77046,2
3510022,08556,1
5013529,711072,6
7016536,314092,4
9520044,0170112,2
12023050,6200132,0





























Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
0,511
0,7515
1171615141514
1,2201816151614,5
1,5231917161815
2262422202319
2,5302725252521
3343228262824
4413835303227
5464239343731
6504642404034
8625451464843
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250
150440360330
185510
240605
300695
400830
























Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190
150340275255
185390
240465
300535
400645





















Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,

найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток*, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605

* Токи относятся к кабелям и проводам с нулевой жилой и без нее.




















Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
2,52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
70210165245140210
95250200295170255
120295230340200295
150340270390235335
185390310440270385
240465

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.








Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
Сечение медных жил проводов и кабелей, кв.ммДопустимый длительный ток нагрузки для проводов и кабелей, АНоминальный ток автомата защиты, АПредельный ток автомата защиты, АМаксимальная мощность однофазной нагрузки при U=220 BХарактеристика примерной однофазной бытовой нагрузки
1,51910164,1группа освещения и сигнализации
2,52716205,9розеточные группы и электрические полы
43825328,3водонагреватели и кондиционеры
646324010,1электрические плиты и духовые шкафы
1070506315,4вводные питающие линии

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.






Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, кв.мм
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4

 

Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене. 

Площадь поперечного сечения к диаметру пересечение круга пересечения диаметр поперечного сечения электрического кабеля формула проводника диаметр провода и расчетное сечение провода AGW American Wire Gauge Толстая площадь сплошного провода формула удельное сопротивление многожильный провод литц длина ток

Площадь поперечного сечения к диаметру преобразование круг пересечение поперечное сечение диаметр электрический кабель формула проводника диаметр провода и сечение проводки и расчетное сечение AGW American Wire Gauge толщина сплошного провода формула удельное сопротивление многожильный провод длина литца ток — sengpielaudio Sengpiel Berlin

Преобразование и расчет — поперечное сечение <> диаметр

Диаметр кабеля по окружности площадь поперечного сечения и наоборот

электрический кабель , провод , провод , шнур ,
строка ,
проводка и веревка

Поперечное сечение — это просто двухмерный вид среза через объект.
Часто задаваемый вопрос: как преобразовать диаметр круглого провода d = 2 × r в площадь поперечного сечения круга
или площадь поперечного сечения A (плоскость среза) в кабель диаметр d ?
Почему значение диаметра больше, чем значение площади? Потому что это не то же самое.
Сопротивление обратно пропорционально площади поперечного сечения провода.

Требуемое сечение электрической линии зависит от следующих факторов:
1) Номинальное напряжение.Чистая форма. (Трехфазный (DS) / AC (WS))
2) Предохранитель — резервный восходящий поток = Максимально допустимый ток (А)
3) По графику передаваемая мощность (кВА)
4) Длина кабеля в метрах (м)
5) Допустимое падение напряжения (% от номинального напряжения)
6) Материал линии. Медь (Cu) или алюминий (Al)

Используемый браузер не поддерживает JavaScript.
Вы увидите программу, но функция работать не будет.

«Единицей» обычно являются миллиметры, но также могут быть дюймы, футы, ярды, метры (метры),
или сантиметры, если вы принимаете за площадь квадрат этой меры.

Литц-провод (многожильный провод), состоящий из множества тонких проводов, требует на 14% большего диаметра по сравнению со сплошным проводом.

Площадь поперечного сечения не диаметр.

Поперечное сечение — это площадь.
Диаметр — это линейная мера.
Это не может быть то же самое.

Диаметр кабеля в миллиметрах
— это не поперечное сечение кабеля в
квадратных миллиметрах.

Поперечное сечение или площадь поперечного сечения — это площадь такого разреза.
Это не обязательно должен быть круг.

Имеющийся в продаже размер провода (кабеля) как площадь поперечного сечения:
0,75 мм 2 , 1,5 мм 2 , 2,5 мм 2 , 4 мм 2 , 6 мм 2 , 10 мм 2 , 16 мм 2 .

Расчет поперечного сечения A , ввод диаметра d = 2 r :

r = радиус провода или кабеля
d = 2 r = диаметр провод или кабель

Расчет диаметра d = 2 r , вход в сечение A :

Жила (электрокабель)

На сопротивление проводника влияют четыре фактора:
1) площадь поперечного сечения проводника A , рассчитанная по диаметру d
2) длина проводника
3) температура в проводнике
4) материал, составляющий проводник

Нет точной формулы для минимального сечения провода из максимального тока .
Это зависит от многих обстоятельств, таких как, например, если расчет выполняется для постоянного, переменного тока или
даже для трехфазного тока, отпускается ли кабель свободно или проложен под землей
. Кроме того, это зависит от температуры окружающей среды, допустимой плотности тока и допустимого падения напряжения
, а также от наличия одножильного или гибкого провода. И всегда есть хороший, но неудовлетворительный совет
использовать по соображениям безопасности более толстый и, следовательно, более дорогой кабель
.Часто задаваемые вопросы касаются падения напряжения на проводах.

Падение напряжения Δ В

Формула падения напряжения с удельным сопротивлением (удельным сопротивлением) ρ (rho):

Δ V = I × R = I × (2 × l × ρ / A )

I = Ток в амперах
l = Длина провода (кабеля) в метрах (умноженная на 2, потому что всегда есть обратный провод)
ρ = rho, удельное электрическое сопротивление (также известное как удельное электрическое сопротивление или объемное
удельное сопротивление) меди = 0.01724 Ом × мм 2 / м (также Ом × м)
(Ом для l = длина 1 м и A = 1 мм 2 площадь поперечного сечения провода) ρ = 1/ σ
A = Площадь поперечного сечения в мм 2
σ = сигма, электрическая проводимость (электропроводность) меди = 58 S · м / мм 2

Количество сопротивления
R = сопротивление Ом
ρ = удельное сопротивление Ом × м
l = двойная длина кабеля м
A = поперечное сечение мм 2

Производная единица удельного электрического сопротивления в системе СИ ρ — Ом × м, сокращенная от
прозрачный Ω × мм / м.
Электропроводность, обратная величине удельного электрического сопротивления.

Электропроводность и удельное сопротивление κ или σ = 1/ ρ
Электропроводность и электрическое сопротивление
ρ = 1/ κ = 1/ σ

Разница между удельным электрическим сопротивлением и электропроводностью

Проводимость в сименсах обратно пропорциональна сопротивлению в омах.

Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака .

Значение электропроводности (проводимости) и удельного электрического сопротивления
(удельное сопротивление) зависит от температуры материала постоянной. Чаще всего его дают при 20 или 25 ° C.

Сопротивление = удельное сопротивление x длина / площадь

Удельное сопротивление проводников изменяется в зависимости от температуры.
В ограниченном диапазоне температур это примерно линейно:

, где α — температурный коэффициент, T — температура и T 0 — любая температура,
, например T 0 = 293,15 K = 20C, при котором известно удельное электрическое сопротивление ρ ( T 0 ).

Преобразование сопротивления в электрическую проводимость
Преобразование обратного сименса в ом
1 Ом [Ом] = 1 / сименс [1 / S]
1 сименс [S] = 1 / Ом [1 / Ом]

Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака .

1 миллисименс = 0,001 МО = 1000 Ом

Математически проводимость является обратной или обратной величине сопротивления:

Символом проводимости является заглавная буква «G», а единицей измерения является
мхо, что означает «ом», записанное в обратном порядке. Позже блок mho был заменен блоком
на блок Siemens — сокращенно буквой «S».

Калькулятор: закон Ома

Таблица типовых кабелей для громкоговорителей

Диаметр кабеля d 0.798 мм 0,977 мм 1,128 мм 1,382 мм 1.784 мм 2,257 мм 2.764 мм 3.568 мм
Номинальное сечение кабеля A 0,5 мм 2 0,75 мм 2 1,0 мм 2 1,5 мм 2 2,5 мм 2 4,0 мм 2 6,0 мм 2 10.0 мм 2
Максимальный электрический ток 3 А 7,6 А 10,4 А 13,5 А 18,3 А 25 А 32 А

Всегда учитывайте, что поперечное сечение должно быть больше при большей мощности и большей длине
кабеля, но также и с меньшим импедансом. Вот таблица, в которой указаны возможные потери мощности.

Длина кабеля
в м
Сечение
в мм 2
Сопротивление
Ом
Потеря мощности при Коэффициент демпфирования при
Импеданс
8 Ом
Импеданс
4 Ом
Импеданс
8 Ом
Импеданс
4 Ом
1 0.75 0,042 0,53% 1,05% 98 49
1,50 0,021 0,31% 0,63% 123 62
2,50 0,013 0,16% 0,33% 151 75
4,00 0,008 0,10% 0,20% 167 83
2 0.75 0,084 1,06% 2,10% 65 33
1,50 0,042 0,62% 1,26% 85 43
2,50 0,026 0,32% 0,66% 113 56
4,00 0,016 0,20% 0,40% 133 66
5 0.75 0,210 2,63% 5,25% 32 16
1,50 0,125 1,56% 3,13% 48 24
2,50 0,065 0,81% 1,63% 76 38
4,00 0,040 0,50% 1,00% 100 50
10 0.75 0,420 5,25% 10,50% 17 9
1,50 0,250 3,13% 6,25% 28 14
2,50 0,130 1,63% 3,25% 47 24
4,00 0,080 1,00% 2,00% 67 33
20 0.75 0,840 10,50% 21,00% 9 5
1,50 0,500 6,25% 12,50% 15 7
2,50 0,260 3,25% 6,50% 27 13
4,00 0,160 2,00% 4,00% 40 20

Значения коэффициента демпфирования показывают, что осталось от принятого коэффициента демпфирования 200
в зависимости от длины кабеля, поперечного сечения и импеданса громкоговорителя.
Преобразование и расчет диаметра кабеля в AWG
и AWG в диаметр кабеля в мм — American Wire Gauge

Чаще всего мы используем четные числа, например 18, 16, 14 и т. Д.
Если вы получили нечетный ответ, например 17, 19 и т. Д., Используйте следующее меньшее четное число.

AWG означает American Wire Gauge и относится к прочности проводов.
Эти номера AWG обозначают диаметр и, соответственно, поперечное сечение в виде кода.
Используются только в США. Иногда номера AWG можно найти также в каталогах
и технических данных в Европе.

Американский калибр проводов — диаграмма AWG

AWG
номер
46 45 44 43 42 41 40 39 38 37 36 35 34
Диаметр
дюйм
0.0016 0,0018 0,0020 0,0022 0,0024 0,0027 0,0031 0,0035 0,0040 0,0045 0,0050 0,0056 0,0063
Диаметр (Ø)
в мм
0,04 0,05 0,05 0,06 0,06 0,07 0,08 0,09 0,10 0,11 0.13 0,14 0,16
Поперечное сечение
в мм 2
0,0013 0,0016 0,0020 0,0025 0,0029 0,0037 0,0049 0,0062 0,0081 0,010 0,013 0,016 0,020
AWG
номер
33 32 31 30 29 28 27 26 25 24 23 22 21
Диаметр
дюйм
0.0071 0,0079 0,0089 0,0100 0,0113 0,0126 0,0142 0,0159 0,0179 0,0201 0,0226 0,0253 0,0285
Диаметр (Ø)
в мм
0,18 0,20 0,23 0,25 0,29 0,32 0,36 0,40 0,45 0,51 0.57 0,64 0,72
Поперечное сечение
в мм 2
0,026 0,032 0,040 0,051 0,065 0,080 0,10 0,13 0,16 0,20 0,26 0,32 0,41
AWG
номер
20 19 18 17 16 15 14 13 12 11 10 9 8
Диаметр
дюйм
0.0319 0,0359 0,0403 0,0453 0,0508 0,0571 0,0641 0,0719 0,0808 0,0907 0,1019 0,1144 0,1285
Диаметр (Ø)
в мм
0,81 0,91 1.02 1,15 1,29 1,45 1,63 1,83 2,05 2.30 2.59 2,91 3,26
Поперечное сечение
в мм 2
0,52 0,65 0,82 1,0 1,3 1,7 2,1 2,6 3,3 4,2 5,3 6,6 8,4
AWG
номер
7 6 5 4 3 2 1 0
(1/0)
(0)
00
(2/0)
(-1)
000
(3/0)
(-2)
0000
(4/0)
(-3)
00000
(5/0)
(-4)
000000
(6/0)
(-5)
Диаметр
дюйм
0.1443 0,1620 0,1819 0,2043 0,2294 0,2576 0,2893 0,3249 0,3648 0,4096 0,4600 0,5165 0,5800
Диаметр (Ø)
в мм
3,67 4,11 4,62 5,19 5,83 6.54 7,35 8,25 9,27 10,40 11.68 13,13 14,73
Поперечное сечение
в мм 2
10,6 13,3 16,8 21,1 26,7 33,6 42,4 53,5 67,4 85,0 107,2 135,2 170,5

Как высокие частоты демпфируются длиной кабеля?

Таблица размеров калибра проволоки | Таблица AWG

Калькулятор и таблица размеров американского калибра проводов (AWG).

Калькулятор калибра провода

* @ 68 ° F или 20 ° C

** Диаметр и площадь поперечного сечения не включают изоляцию.

*** Результаты могут отличаться для реальных проволок: различное удельное сопротивление материала и количество жил в проволоке

Калькулятор падения напряжения ►

AWG диаграмма

AWG # Диаметр
(дюйм)
Диаметр
(мм)
Площадь
(тыс. Км)
Площадь
(мм 2 )
0000 (4/0) 0.4600 11,6840 211.6000 107.2193
000 (3/0) 0,4096 10,4049 167.8064 85.0288
00 (2/0) 0,3648 9,2658 133.0765 67.4309
0 (1/0) 0,3249 8,2515 105,5345 53,4751
1 0,2893 7.3481 83,6927 42,4077
2 0,2576 6.5437 66,3713 33.6308
3 0,2294 5,8273 52,6348 26.6705
4 0,2043 5,1894 41,7413 21.1506
5 0,1819 4,6213 33.1024 16.7732
6 0,1620 4,1154 26,2514 13,3018
7 0,1443 3,6649 20,8183 10,5488
8 0,1285 3,2636 16,5097 8,3656
9 0,1144 2,9064 13.0927 6,6342
10 0.1019 2,5882 10,3830 5,2612
11 0,0907 2.3048 8,2341 4,1723
12 0,0808 2,0525 6.5299 3.3088
13 0,0720 1,8278 5,1785 2.6240
14 0,0641 1,6277 4.1067 2,0809
15 0,0571 1.4495 3,2568 1,6502
16 0,0508 1,2908 2,5827 1,3087
17 0,0453 1,1495 2,0482 1.0378
18 0,0403 1.0237 1,6243 0,8230
19 0.0359 0,9116 1,2881 0,6527
20 0,0320 0,8118 1.0215 0,5176
21 0,0285 0,7229 0,8101 0,4105
22 0,0253 0,6438 0,6424 0,3255
23 0,0226 0,5733 0.5095 0,2582
24 0,0201 0,5106 0,4040 0,2047
25 0,0179 0,4547 0,3204 0,1624
26 0,0159 0,4049 0,2541 0,128
27 0,0142 0,3606 0.2015 0,1021
28 0.0126 0,3211 0,1598 0,0810
29 0,0113 0,2859 0,1267 0,0642
30 0,0100 0,2546 0,1005 0,0509
31 0,0089 0,2268 0,0797 0,0404
32 0,0080 0,2019 0.0632 0,0320
33 0,0071 0,1798 0,0501 0,0254
34 0,0063 0,1601 0,0398 0,0201
35 0,0056 0,1426 0,0315 0,0160
36 0,0050 0,1270 0,0250 0,0127
37 0.0045 0,1131 0,0198 0,0100
38 0,0040 0,1007 0,0157 0,0080
39 0,0035 0,0897 0,0125 0,0063
40 0,0031 0,0799 0,0099 0,0050

Расчет калибра провода

Расчет диаметра проволоки

Диаметр проволоки калибра n d n дюймов (дюймов) равен 0.005, умноженное на 92 в степени 36 минус значение шкалы n, разделенное на 39:

d n (дюйм) = 0,005 дюйма × 92 (36- n ) / 39

Диаметр проволоки калибра n d n в миллиметрах (мм) равен 0,127 мм, умноженному на 92, в степени 36 минус номер калибра n, деленный на 39:

d n (мм) = 0,127 мм × 92 (36- n ) / 39

Расчет площади поперечного сечения провода

Площадь поперечного сечения провода n-го калибра A n в килокружных милах (kcmil)
равно 1000 диаметрам квадратной проволоки d в дюймах (дюймах):

A n (kcmil) = 1000 × d n 2
= 0.025 дюйм 2 × 92 (36- n ) / 19,5

Площадь поперечного сечения провода калибра n A n в квадратных дюймах (в дюймах 2 )
равно пи, деленному на 4 диаметра квадратной проволоки d в дюймах (дюймах):

A n (дюйм 2 ) = (π / 4) × d n 2
= 0,000019635 дюйм 2 × 92 (36- n ) / 19,5

Площадь поперечного сечения провода калибра n A n
в квадратных миллиметрах (мм 2 )
равно пи, деленному на 4 диаметра квадратной проволоки d в миллиметрах (мм):

A n (мм 2 ) = (π / 4) × d n 2
= 0.012668 мм 2 × 92 (36- n ) /19,5

Расчет сопротивления проводов

Сопротивление R провода калибра n в Ом на килофит (Ом / кфут) равно 0,3048 × 1000000000 удельному сопротивлению провода ρ дюйм
Ом-метр (Ом · м), разделенное на 25,4 2 , умноженное на площадь поперечного сечения A n в квадратных дюймах (в 2 ):

R n (Ом / kft) = 0,3048 × 10 9 × ρ (Ом · м) / (25.4 2
× A n 2 ) )

Сопротивление провода N калибра R в Ом на километр (Ом / км) равно 1000000000 удельному сопротивлению провода ρ дюйм
ом-метры (Ом · м), разделенные на площадь поперечного сечения A n в квадратных миллиметрах (мм 2 ):

R n (Ом / км) = 10 9
× ρ (Ом · м) / A n (мм 2 )


См. Также

Справочный центр

— Справочная таблица калибра проводов (AWG)

Все размеры калибра на этом веб-сайте относятся к американскому калибру проводов (AWG).Имеющиеся манометры выделены жирным шрифтом ниже. Информация о диаметре в таблице относится только к сплошной проволоке. Калибры многожильных проводов следует измерять путем расчета эквивалентной площади поперечного сечения меди. Во-первых, измерьте чистый диаметр одной пряди и найдите значение круговых милов в строке, которая соответствует вашему измерению. Во-вторых, умножьте круглые милы на количество жил кабеля. Наконец, найдите в таблице строку с круговым числом милов, которое наиболее точно соответствует вашему расчету.

Американский калибр проводов (AWG) — это система числовых размеров проводов, которые начинаются с наименьших цифр (6/0) для наибольших размеров. Размеры датчиков разнесены на 26% в зависимости от площади поперечного сечения. AWG также известен как Brown & Sharpe Gage.

SWG = Standard or Sterling Wire Gauge, британская система измерения проволоки.

BWG = Birmingham Wire Gauge, старая британская система измерения проволоки, которая широко использовалась во всем мире.

Cir Mils или CMA = Circular Mil Area, которая равна 1/1000 (0.001) диаметром дюйма или 0,000507 мм.

7

9

2 900,08

900

0

AWG / SWG / BWG / MM Открытый диам. (Дюймы) Диаметр без оболочки. (Мм) AWG SWG BWG Круглые фрезы
6/0 AWG 0,580000 14,73200 6/0 — — — — 336,390,338592
5/0 AWG 0,516500 13,11910 5/0 7/0 — — 266764.588301
7/0 SWG 0.500000 12.70000 5/0 7/0 — — 249,992.820000
6/0 SWG 0.464000 11.78560 4 / 0 6/0 4/0 215,289,816699
4/0 AWG 0,460000 11,68400 4/0 4/0 4/0 211,593.

8
4/0 BWG 0.454000 11,53160 4/0 4/0 4/0 206,110.080348
5/0 SWG 0,432000 10.

4/0 5/0 3 / 0 186,618,640159
3/0 BWG 0,425000 10,79500 3/0 3/0 3/0 180,619,812450
3/0 AWG 0,409600 10,40 3/0 3/0 3/0 167 767.341584
4/0 SWG 0,400000 10,16000 4/0 4/0 4/0 159,995,404800
2/0 BWG 0,380000 9.65200 2 / 0 2/0 2/0 144,395,852832
3/0 SWG 0,372000 9,44880 3/0 3/0 3/0 138,380,025612
2/0 AWG 0.364800 9,26592 2/0 2/0 2/0 133,075,217970
2/0 SWG 0,348000 8,83920 2/0 2/0 2 / 0 121,100,521893
0 BWG 0,340000 8,63600 0 0 0 115,596,679968
0 AWG 0,324900 8,25246 0

105,556.
0 SWG 0,324000 8,22960 0 0 0 104,972.
1 SWG 0,300000 7,62000 1 1 900
1 BWG 0,300000 7,62000 1 1 1 89,997,415200
1 AWG 0,289300 7.34822 1 1 1 83 692,086294
2 BWG 0,283000 7,18820 2 2 2 80,086,699844
2 SW76G 2 2 2 76,173,812225
1,5 AWG 0,273003 6,

1,5 2 2 74,528.4
3 BWG 0,259000 6,57860 2 3 3 67,079,073434
2 AWG 0,258000 6,55320 2 2 3,85320 2 2
3 SWG 0,252000 6,40080 2 3 3 63,502,176165
2,5 AWG 0.243116 6,17515 2,5 3 4 59,103,6

4 BWG 0,238000 6,04520 3 4 4 56,642,373184
56,642,373184
5,89280 3 4 4 53,822,454175
3 AWG 0,229000 5,81660 3 4 5 52,439.4

5 BWG 0,220000 5,58800 3 5 5 48,398,609952
3,5 AWG 0,216501 5,49913 3,5 4 6,49913 3,5 4 6,49913 3,5 4
5 SWG 0,212000 5,38480 4 5 5 44,942,709208
4 AWG 0.204000 5,18160 4 5 6 41,614.804788
6 BWG 0,203000 5.15620 4 6 6 41,207,816478
4,89712 4,5 6 7 37,170,772425
5 AWG 0,182000 4,62280 5 7 7 33,123.048679
7 BWG 0,179000 4,54660 5 8 7 32,040,079782
5,5 AWG 0,171693 4,36100 5,5 7 8,5 7 8,5 7
8 BWG 0,164000 4,16560 6 8 8 26,895.227547
6 AWG 0.162023 4,11538 6 7 8 26,250,6
6,5 AWG 0,152897 3,88358 6,5 9 9 23,376,821207
3,73380 7 9 9 21,608,379390
7 AWG 0,144285 3,66484 7 9 9 20,817.563327
9 SWG 0,144000 3.65760 7 9 9 20,735,404462
7,5 AWG 0,136459 3,46606 7,581

9 7,581

9
10 BWG 0,134000 3,40360 8 10 10 17,955,484304
3,35 MM 0.131890 3,34999 8 9 10 17,394,340630
8 AWG 0,128500 3,26390 8 10 10 16,511.775768
3,25120 8 10 10 16,383,529452
3,15 MM 0,124016 3,14999 8 10 11 15 379.402531
8,5 AWG 0,121253 3,07983 8,5 10 11 14,701,867759
11 BWG 0,120000 3,04800 9 11 9 11
3 мм 0,118110 2,99999 9 10 11 13,949,571457
11 SWG 0.116000 2,

9 11 11 13,455,613544
9 AWG 0,114400 2,
9 11 11 13,086,

1 0,19

2,79999 9 11 12 12,151,626691 12 BWG 0,109000 2,76860 10 12 12 11,880.658778 9,5 AWG 0,107979 2,74267 9,5 11 12 11,659,129581 2,65 мм 0,104331 2,64999 10 10 10 12 SWG 0,104000 2,64160 10 12 12 10,815,689364 10 AWG 0.101900 2,58826 10 12 12 10,383,311783 2,5 мм 0,0 2,50000 10 12 13 9,687.20 AW2401 10,5

2.44241 10,5 12 13 9,246,0 13 BWG 0,0

2,41300 11 13 13 9,024.740802 2,36 мм 0,0 2,36000 11 12 13 8,632,614798 13 SWG 0,0 2,33680 11 13 7 13,

9005 11 AWG 0,0

2,30378 11 13 13 8,226,253735 2,24 MM 0.088189 2,24000 11 13 14 7,777,041082 11,5 AWG 0,085800 2,17932 11,5 13 14 7,361,428574 0,034 мм

2.12000 12 14 14 6,966,105995 14 BWG 0,083000 2,10820 12 14 14 6,888.802148 12 AWG 0,080800 2,05232 12 14 14 6,528,452497 14 SWG ​​ 0,080000 2,03200 12 14 6,03200 12 14 14,999 2 мм 0,078740 2,00000 12 14 15 6,199,809536 12,5 AWG 0.076400 1,

12,5 14 15 5,836,7 1,9 мм 0,074803 1,

13 15 15 5,595.328107 0,08

1,82880 13 15 15 5,183,851116 15 SWG 0,072000 1,82880 13 15 15 5,183.851116 15 BWG 0,072000 1,82880 13 15 15 5,183,851116 1,8 MM 0,070866 1,80000 13 15 1621 13,5 AWG 0,068100 1,72974 13,5 15 16 4,637,476808 1,7 MM 0.066929 1,70000 14 16 16 4,479,362390 16 BWG 0,065000 1,65100 14 16 16 4,224,878658

0,01 1,62814 14 16 16 4,108,6

16 SWG 0,064000 1,62560 14 16 16 4,095.882363 1,6 мм 0,062992 1,60000 14 16 17 3,967,878103 14,5 AWG 0,060500 1,53670 14,5 16

3 60 900 1,5 мм 0,059055 1,50000 15 17 17 3,487,3

17 BWG 0.058000 1.47320 15 17 17 3,363.

6 15 AWG 0,057100 1.45034 15 17 17 3,260,316361 0,08

1,42240 15 17 17 3,135,

4 1,4 мм 0,055118 1,40000 15 17 18 3,037.

3 15,5 AWG 0,053900 1,36906 15,5 16 18 2,905,126562 1,32 MM 0,051968 1,32000 16

3 17

1,32000 16

8 17

1,3 мм 0,051200 1,30048 16 18 18 2,621,364712 16 AWG 0.050800 1,29032 16 18 18 2,580,565884 1,25 мм 0,049213 1,25000 16 18 18 2,421,800600 18 0,08 BWG

1,24460 16 18 18 2,400,

3 18 SWG 0,048000 1,21920 16 18 18 2,303.

9 16,5 AWG 0,048000 1,21920 16,5 17 19 2,303,

9 1,2 мм 0,047200 1,19888 17

2,29888 17

9008 1,18 мм 0,046457 1,18000 17 18 19 2,158,153700 17 AWG 0.045300 1,15062 17 18 19 2,052,031064 1,15 мм 0,045275 1,14999 17 18 19 2,049,766754 0,049,766754 0,049,766754 0,09

1,12000 17 19 19 1,944,260271 1,1 MM 0,043300 1,09982 17 19 20 1,874.836153 17,5 AWG 0,042700 1,08458 17,5 18 20 1,823,237635 19 BWG 0,042000 1,06680 18 1,06 мм 0,041732 1,06000 18 19 20 1,741,526499 18 AWG 0.040300 1.02362 18 19 20 1,624.043356 19 SWG 0,040000 1.01600 18 19 19 1,599.

8 1,999.

8 1

1,00000 18 20 20 1,549,

4 18,5 AWG 0,038000 0,

18,5 19 21 1,443.

8,95 мм 0,037402 0,

19 20 21 1,398,832027 20 SWG 0,036000 0, 19 20 0, 19 20

,979 19 AWG 0,035900 0, 19 20 21 1,288,772985,9 MM 0.035433 0,

19 20 21 1,255,461431 20 BWG 0,035000 0,88900 19 20 20 1,224.

8 19,5

0,86106 19,5 20 22 1,149,176995,85 мм 0,033465 0,85000 20 21 21 1,119.840598 20 AWG 0,032000 0,81280 20 21 21 1,023,

1 21 SWG 0,032000 0,81280 20 21 21
,8 мм 0,031496 0,80000 20 21 22 991,

6 21 BWG 0.031000 0,78740 20 21 21 960,

0 20,5 AWG 0,030200 0,76708 20,5 21 22 912,013806 0,013806 0,75000 21 22 22 871,848216 21 AWG 0,028500 0,72390 21 22 22 812.226672 22 SWG 0,028000 0,71120 21 22 22 783,

4 22 BWG 0,028000 0,71120 21 22 0,71120 21 22 22

,99,71 мм 0,027953 0,71000 21 22 22 781,330997,7 мм 0.027600 0,70104 21 22 23 761.738122 21,5 AWG 0,026900 0,68326 21,5 22 23 723,589218 723,589218 мм 0,65024 22 23 23 655,341178 22 AWG 0,025300 0,64262 22 23 23 640.071617 23 BWG 0,025000 0,63500 22 23 23 624.

0,63 MM 0,024803 0,63000 22 23 81

239158 23 SWG 0,024000 0,60960 22 23 23 575,

7 22,5 AWG 0.023900 0,60706 22,5 23 24 571,1,6 мм 0,023622 0,60000 23 23 24 557,

8 0,058 0,58420 23 24 24 528,

7 23 AWG 0,022600 0,57404 23 24 24 510.745331 .56 MM 0,022100 0,56134 23 24 24 488,3 24 SWG ​​ 0,022000 0,55880 23 24 24 24, 55 мм 0,021700 0,55118 24 25 25 470,876476 23,5 AWG 0.021300 0,54102 23,5 24 25 453,676970 24 AWG 0,020100 0,51054 24 25 25 403,9 25 403,9 0,50800 24 25 25 399,

2 25 BWG 0,020000 0,50800 24 25 25 399.

2,5 мм 0,019685 0,50000 24 25 25 387,488096 24,5 AWG 0,019000 0,48260

24,5 25 26008 260081
24,5 25 26 SWG 0,018000 0,45720 25 26 26 323,9

26 BWG 0.018000 0,45720 21 22 26 323,9

25 AWG 0,017900 0,45466 25 26 26 320,400798 .457 мм 0,45000 25 26 27 313,865358 25,5 AWG 0,016900 0,42926 25,5 26 27 285.601797 .425 мм 0,016732 0,42500 26 27 27 279.

9 27 SWG 0,016400 0,41656 26 27 26 27

9008 27 BWG 0,016000 0,40640 26 27 27 255,9

26 AWG 0.015900 0,40386 26 27 27 252.802739,4 мм 0,015748 0,40000 26 27 28 247,9 26,5 0,0 AWG 0,38100 26,5 27 28 224,9 28 SWG 0,014800 0,37592 27 28 28 219.033709 27 AWG 0,014200 0,36068 27 28 28 201,634209 0,355 ММ 0,013976 0,35500 27 28 2 29 SWG 0,013600 0,34544 27 29 29 184.

8 28 BWG 0.013500 0,34290 28 28 28 182,244766 27,5 AWG 0,013400 0,34036 27,5 29 29 179,554843

0,08

0,33020 28 29 29 168,9

28 AWG 0,012600 0,32004 28 30 29 158.755440 .315 MM 0,012402 0,31500 28 30 30 153,7 30 SWG 0,012400 0,31496 28 30 30 30 30 30 BWG 0,012000 0,30480 29 30 30 143,9

28,5 AWG 0.011900 0,30226 28,5 30 30 141.605933,31 мм 0,011800 0,29972 29 31 31 139,2360081 31 139,2360081 31 0,011 SWG 0,29464 29 31 31 134,556135 29 AWG 0,011300 0,28702 29 31 30 127.686333,28 мм 0,011024 0,28000 29 32 32 121,516267 32 SWG 0,010800 0,27432

29 32 0,27432

29 32 0,27432 29 32,63 29,5 AWG 0,010600 0,26924 29,5 32 31 112,356773 30 AWG 0.010000 0,25400 30 33 31 99,9 33 SWG 0,010000 0,25400 30 33 33 99.9 31 B10000 0,25400 30 33 31 99,9,25 мм 0,009843 0,25000 30 33 32 96.872024 30,5 AWG 0,009500 0,24130 30,5 33 32 90,247408 34 SWG ​​ 0,009200 0,23368 31 34 343 32 BWG 0,009000 0,22860 31 31 32 80,9 31 AWG 0.008900 0,22606 31 34 32 79,207725,224 мм 0,008819 0,22400 31 35 33 77.770411 3584 SWG ​​900 0,21336 32 35 35 70,557974 31,5 AWG 0,008400 0,21336 31,5 34 33 70.557974 32 AWG 0,008000 0,20320 32 35 33 63,9

33 BWG 0,008000 0,20320 32 352 33,98,2 мм 0,007874 0.20000 32 36 34 61.9 36 SWG 0,007600 0.19304 32 36 36 57.758341 32,5 AWG 0,007500 0,19050 32,5 35 34 56,248385

33 AWG 0,00710034

33 36 34 50.408552 0,18 мм 0,007087 0,18000 33 36 35 50.218457 34 BWG 0,007000 0,17780 33 36 35 48,9 37 SWG 0,006800 0,17272 33 37 34382 33 37 3438 33,5 AWG 0,006700 0,17018 33,5 36 34 44,888711 34 AWG 0.006300 0,16002 34 37 34 39,688860,16 мм 0,006299 0,16000 34 37 36 39,678781 386G

0,0081 386G 0,15240 34 38 36 35,9

34,5 AWG 0,005900 0,14986 34,5 37 35 34.809000 35 AWG 0,005600 0,14224 35 38 35 31,359099,14 мм 0,005512 0,14000 35 38 357 35,5 AWG 0,005300 0,13462 35,5 38 35 28,089193 39 SWG 0.005200 0,13208 36 39 35 27,039223 36 AWG 0,005000 0,12700 36 39 35 24.999282 35 BWG

0,12700 36 39 35 24,999282 .125 MM 0,004921 0,12500 36 39 35 24.218006 40 SWG 0,004800 0,12192 36 40 35 23,039338 36,5 AWG 0,004700 0,11938 36,5 3981 3581 36,5 3981

37 AWG 0,004500 0,11430 37 40 35 20,249418 .112 MM 0.004409 0,11200 37 40 36 19,442603 41 SWG 0,004400 0,11176 37 41 36 19,359444 37,5 AWG00

0,10668 37,5 41 36 17,639493 38 AWG 0,004000 0,10160 38 42 36 15.999540 42 SWG 0,004000 0,10160 38 42 36 15,999540 36 BWG 0,004000 0,10160 38 40 36,1 MM 0,003937 0,10000 38 42 — — 15,499524 38,5 AWG 0.003700 0,09398 38,5 42 — — 13,689607 43 SWG 0,003600 0,09144 39 43 — — 12.

8 MM

0,003543 0,09000 39 43 — — 12,554614 39 AWG 0,003500 0,08890 39 43 — — 12.249648 39,5 AWG 0,003300 0,08382 39,5 43 — — 10,889687 44 SWG ​​ 0,003200 0,08128 40 44 10,239706 0,08 MM 0,003150 0,08000 40 44 — — 9,

5 40 AWG 0.003100 0,07874 40 44 — — 9.609724 40,5 AWG 0,003000 0,07620 40,5 44 — — AWG 8,999742 41 0,002800 0,07112 41 45 — — 7,839775 45 SWG 0,002800 0,07112 41 45 — — 7.839775 0,071 мм 0,002795 0,07100 41 45 — — 7,813310 41,5 AWG 0,002600 0,06604 41,5 45 6,759806 42 AWG 0,002500 0,06350 42 46 — — 6,249821 0,063 MM 0.002480 0,06300 42 46 — — 6,151761 46 SWG 0,002400 0,06096 42 46 — — 5,759835 42,5 AWG 0,002400 0,06096 42,5 46 — — 5,759835 43 AWG 0,002200 0,05588 43 46 — — 4.839861 43,5 AWG 0,002100 0,05334 43,5 47 — — 4,409873 44 AWG 0,002000 0,05080 44 47 — — — — 3,999885 47 SWG 0,002000 0,05080 44 47 — — 3,999885 0,05 мм 0.001969 0,05000 44 47 — — 3,874881 44,5 AWG 0,001866 0,04740 44,5 47 — — 3,481856 45 AWG 0,001761 0,04473 45 47 — — 3,101032 45,5 AWG 0,001662 0,04221 45,5 48 — — 2.762165 48 SWG 0,001600 0,04064 45,5 48 — — 2,559926 46 AWG 0,001568 0,03983 46 48 — — 900 2.458553 46,5 AWG 0,001480 0,03759 46,5 48 — — 2,1 47 AWG 0.001397 0,03548 47 48 — — 1.

3 47,5 AWG 0,001318 0,03348 47,5 48 — — AWG 1.737074 48 0,001244 0,03160 48 49 — — 1,547492 49 SWG 0,001200 0,03048 48 49 — — 1.439959 48,5 AWG 0,001174 0,02982 48,5 49 — — 1,378236 49 AWG 0,001108 0,02814 49 49 — — — 1,227629 49,5 AWG 0,001045 0,02654 49,5 49 — — 1,0

50 SWG 0.001000 0,02540 49 50 — — 0,999971 50 AWG 0,000986 0,02505 50 50 — — 0,

0 50,5 0,000931 0,02364 50,5 50 — — 0,866364 51 AWG 0,000878 0,02231 51 — — — — 0.771389 51,5 AWG 0,000829 0,02105 51,5 — — — — 0,687055 52 AWG 0,000782 0,01987 52 — — — 0,611819 52,5 AWG 0,000738 0,01875 52,5 — — — — 0,544776 53 AWG 0.000697 0,01769 53 — — — — 0,485238 53,5 AWG 0,000657 0,01670 53,5 — — — — 0,432031 0,000620 0,01576 54 — — — — 0,384761 54,5 AWG 0,000585 0,01487 54,5 — — — — 0.342683 55 AWG 0,000552 0,01403 55 — — — — 0,305137 55,5 AWG 0,000521 0,01324 55,5 — — 0,271746 56 AWG 0,000492 0,01249 56 — — — — 0,241959 56,5 AWG 0.000464 0,01179 56,5 — — — — 0,215475 57 AWG 0,000438 0,01113 57 — — — — 0,1

AWG

57 0,000413 0,01050 57,5 ​​ — — — — 0,170895 58 AWG 0,000390 0,00991 58 — — — — 0.152174 58,5 AWG 0,000368 0,00935 58,5 — — — — 0,135494 59 AWG 0,000347 0,00882 59 — — — — 0,120683 59,5 AWG 0,000328 0,00833 59,5 — — — — 0,107450 60 AWG 0.000309 0,00786 60 — — — — 0,0

Калибры электрических проводов

414,8

Провод AWG Размер
(сплошной)
Площадь
CM *
Сопротивление на
1000 футов (Ом) при 20 ° C
Диаметр
(дюймы)
Максимальный ток **
(амперы)
0000 211600 0,049 0,46 380
000 167810 0.0618 0,40965 328
00 133080 0,078 0,3648 283
0 105530 0,0983 0,32485 245
1,94

0,124 0,2893 211
2 66373 0.1563 0,25763 181
3 52634 0,197 0,22942 158
4 41742 0,2485 0,20431 135
5 0,20431 135
2

0,3133 0,18194 118
6 26250 0.3951 0,16202101
7 20816 0,4982 0,14428 89
8 16509 0,6282 0,12849 73
9 01849
99081 0,7921 0,11443 64
10 10381 0.9989 0,10189 55
11 8234 1,26 0,09074 47
12 6529 1,588 0,0808 41
13 5178 5178

2,003 0,07196 35
14 4106.8 2,525 0,06408 32
15 3256,7 3,184 0,05707 28
16 2582.9 4,016 0,05082 22
2048,2 5,064 0,04526 19
18 1624.3 6,385 0,0403 16
19 1288,1 8,051 0,03589 14
20 1021,5 10,15 0,03196 21 11
810,1 12,8 0,02846 9
22 642.4 16,14 0,02535 7
23 509,45 20,36 0,02257 4,7
24 404,01 25,67 0,0201 3,558
320,4 32,37 0,0179 2,7
26 254.1 40,81 0,01594 2,2
27 201,5 51,47 0,0142 1,7
28 159,79 64,9 0,01264
126,72 81,83 0,01126 1,2
30 100.5 103,2 0,01002 0,86
31 79,7 130,1 0,00893 0,7
32 63,21 164,1 0,00795 0,53
50,13 206,9 0,00708 0.43
34 39,75 260,9 0,0063 0,33
35 31,52 329 0,00561 0,27
36 25 0,21
37 19,83 523.1 0,00445 0,17
38 15,72 659,6 0,00396 0,13
39 12,47 831,8 0,00353 0,11
9409

1049 0,00314 0,09

The U.Калибры S. проводов (называемые калибрами AWG) относятся к размерам медной проволоки. Эта таблица соответствует удельному сопротивлению

для меди при 20 C. В этой таблице используется это значение удельного сопротивления, но известно, что оно варьируется на несколько процентов в зависимости от чистоты и процесса производства.

* В системе AWG площади круглых медных проводов указываются в «круглых милах», которые представляют собой квадрат диаметра в милах. 1 мил = 0,001 дюйма.

Эти данные взяты из Floyd, Electric Circuit Fundamentals, 2nd Ed.

** Максимальный ток для проводки шасси. Данные из Справочника электронных таблиц и формул для американского калибра проводов. Максимальный ток для передачи мощности меньше.

AWG по сравнению с таблицей размеров проводов в Европе

Таблица размеров проводов

Это таблица, объединяющая таблицу американского калибра проводов AWG (проводка шасси, одиночный свободно висящий провод) и европейские стандарты для машинной проводки при +40 o C, EN 60204-1.

AWG Диаметр Площадь поперечного сечения Значение силы тока Макс.частота для 100% глубины кожи
12.36 мм120 мм 2 221 А
0000 11,68 мм 107,16 мм 2 380 А 125 Гц
11,00 мм 95 мм 2 192 А
000 10,40 мм 84,97 мм 2 328 А 160 Гц
9.44 мм 70 мм 2 155 А
00 9,27 мм 67,40 мм 2 283 А 200 Гц
0 8,25 мм 53,46 мм 2 245 А 250 Гц
7,98 мм 50 мм 2 123 А
1 7,35 мм 42.39 мм 2 211 А 325 Гц
6,67 мм 35 мм 2 114 А
2 6,54 мм 33,61 мм 2 181 А 410 Гц
3 5,83 мм 26,65 мм 2 158 А 500 Гц
5,64 мм 25 мм 2 88 А
4 5.19 мм 21,14 мм 2 135 А 650 Гц
5 4,62 мм 16,76 мм 2 118 А 810 Гц
4,51 мм 16 мм 2 70 А
6 4,11 мм 13,29 мм 2 101 А 1100 Гц
7 3.67 мм 10,55 мм 2 89 А 1300 Гц
3,57 мм 10 мм 2 52 А
8 3,26 мм 8,36 мм 2 73 А 1650 Гц
9 2,91 мм 6,63 мм 2 64 А 2050 Гц
2,76 мм 6 мм 2 37 А
10 2.59 мм 5,26 мм 2 55 А 2600 Гц
11 2.30 мм 4,17 мм 2 47 А 3200 Гц
2,26 мм 4 мм 2 30 А
12 2,05 мм 3,31 мм 2 41 А 4150 Гц
13 1.83 мм 2.63 мм 2 35 А 5300 Гц
1.78 мм 2,50 мм 2 22 А
14 1,63 мм 2,08 мм 2 32 А 6700 Гц
15 1,45 мм 1,65 мм 2 28 А 8250 Гц
1,38 мм 1,5 мм 2 16.1 А
16 1,29 мм 1,31 мм 2 22 А 11 кГц
17 1,15 мм 1,04 мм 2 19 А 13 кГц
1,13 мм 1 мм 2 11,5 А
18 1.02 мм 0,82 мм 2 16 А 17 кГц
0.98 мм 0,75 мм 2 9,1 А
19 0,91 мм 0,65 мм 2 14 А 21 кГц
20 0,81 мм 0,52 мм 2 11 А 27 кГц
0,80 мм 0,5 мм 2 7,1 А
21 0,72 мм 0.41 мм 2 9 А 33 кГц
22 0,65 мм 0,33 мм 2 7 А 42 кГц
0,62 мм 0,3 мм 2 5 А
23 0,57 мм 0,26 мм 2 4,7 А 53 кГц
24 0,51 мм 0,20 мм 2 4 А 68 кГц
25 0.45 мм 0,16 мм 2 2,7 А 85 кГц
26 0,40 мм 0,13 мм 2 2,2 А 107 кГц
27 0,361 мм 0,102 мм 2 1,7 А 130 кГц
28 0,321 мм 0,081 мм 2 1,4 А 170 кГц
29 0.286 мм 0,0642 мм 2 1,2 А 210 кГц
30 0,255 мм 0,0509 мм 2 0,86 А 270 кГц
31 0,227 мм 0,0404 мм 2 0,7 А 340 кГц
32 0,202 мм 0,0320 мм 2 0,53 А 430 кГц
33 0.180 мм 0,0254 мм 2 0,43 А 540 кГц
34 0,160 мм 0,0201 мм 2 0,33 А 690 кГц
35 0,143 мм 0,0160 мм 2 0,27 А 870 кГц
36 0,127 мм 0,0127 мм 2 0,21 А 1100 кГц
37 0.113 мм 0,01 мм 2 0,17 А 1350 кГц
38 0,101 мм 0,00797 мм 2 0,13 А 1750 кГц
39 0,0887 мм 0,00632 мм 2 0,11 А 2250 кГц
40 0,0799 мм 0,00501 мм 2 0,09 А 2900 кГц

AWG в мм2 — American Wire Gauge vs.Квадратное сечение, мм

9005 7

Номер AWG Сечение кабеля в мм² Внешний диаметр Ø мм Сопротивление проводника в Ом / км
1000 MCM 507 29,3 0,036
900 456 27,8 0,04
750 380 25,4 0,048
600 304 22,7 0,061
550 279 21,7 0,066
500 253 20,7 0,07
450 228 19,6 0,08
400 203 18,5 0,09
350 177 17,3 0,10
300900 81

152 16,0 0,12
250 127 14,6 0,14
4/0 107,2 11,68 0,18
3/0 85,0 10,40 0,23
2/0 67,4 9,27 0,29
0 53,4 8,25 0,37
1 42,4 7,35 0,47
2 33,6 6 , 54 0,57
3 26,7 5,83 0,71
4 21,2 5,19 0,91
5 16,8 4,62 1,12
6 13,3 4,11 1,44
7 10,6 3,67 1,78
8 8,34 3,26 2,36
9 6,62 2, 91 2,77
10 5,26 2,59 3,64
11 4,15 2,30 4,44
12 3,31 2,05 5,41
13 2,63 1,83 7,02
14 2,08 1, 63 8,79
15 1,65 1,45 11,2
16 1,31 1,29 14,7
17 1,04 1,15 17,8
18 0,8230 1,0240 23,0
19 0,6530 0,9120 28,3
20 0,5190 0,8120 34,5
21 0,4120 0,7230 44,0
22 0,3240 0,6440 54,8
23 0,2590 0,5730 70,1
24 0,2050 0,5110 89,2
25 0,1630 0,4550 111,0
26 0,1280 0,4050 146,0
27 0,1020 0,3610 176,0
28 0,0804 0,3210 232,0
29 0,0646 0,2860 282,0
30 0, 0503 0,2550 350,0
31 0,0400 0,2270 446,0
32 0,0320 0,2020 578, 0
33 0,0252 0,1800 710,0
34 0,0200 0,1600 899,0
35 0, 0161

0,1430

1125,0
36 0,0123 0,1270 1426,0
37

0,0100

0, 1130

1800,0
38 0,00795 0,1010 2255,0
39 0,00632 0,0897 2860,0

4/0 также известен как 0000; 1 мил = дюйм = 0,0254 мм
* показано в MCM (круговые фрезы) для больших поперечных сечений

1 CM = 1 круг.mil = 0,0005067 мм²
1 MCM = 1000 Circ. мил = 0,5067 мм²

Часто задаваемые вопросы: таблица AWG и метрическая система

AWG или American Wire Gauge — стандартная мера в США для диаметра электрических проводников. Таблица размеров проволоки American Wire Gauge основана на количестве матриц, изначально необходимых для протягивания меди до требуемого размерного размера. Это означает, что чем выше номер AWG, тем меньше диаметр провода. Наши кабели Belden и пары в кабелях для КИП — это некоторые из электрических кабелей, у которых размер жилы выражается в формате AWG.Наш кабель с тройным номиналом, соответствующий американскому стандарту UL758, при необходимости может быть преобразован в провода сечений AWG.

Самый распространенный метод определения размеров проводов — это площадь поперечного сечения, выраженная в мм². Следующая таблица преобразования AWG в метрическую систему преобразует AWG в миллиметры и дюймы, а также указывает площадь поперечного сечения.

Метрическая таблица преобразования AWG (AWG в мм)

Американский калибр проводов (AWG)

Диаметр (дюйм)

Диаметр (мм)

Площадь поперечного сечения (мм 2 )

0000 (4/0) 0.460 11,7 107,0
000 (3/0) 0,410 10,4 85,0
00 (2/0) 0,365 9,27 67,4
0 (1/0) 0,325 8,25 53,5
1 0,289 7,35 42,4
2 0,258 6.54 33.6
3 0,229 5,83 26,7
4 0,204 5,19 21,1
5 0,182 4,62 16,8
6 0,162 4,11 13,3
7 0,144 3,67 10,6
8 0,129 3.26 8,36
9 0,114 2,91 6,63
10 0,102 2,59 5,26
11 0,0,907 2.30 4,17
12 0,0808 2,05 3,31
13 0,0720 1,83 2,63
14 0.0641 1,63 2,08
15 0,0571 1,45 1,65
16 0,0508 1,29 1,31
17 0,0453 1,15 1,04
18 0,0403 1.02 0,82
19 0,0359 0,91 0,65
20 0.0320 0,81 0,52
21 0,0285 0,72 0,41
22 0,0254 0,65 0,33
23 0,0226 0,57 0,26
24 0,0201 0,51 0,20
25 0,0179 0,45 0,16
26 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*