Регулировка давления на насосной станции: Страница не найдена – Совет Инженера

Содержание

Гидроаккумулятор и реле давления. Настраиваем правильно





Рис1. Гидроаккумулятор

    При сборке насосной станции важнейшим вопросом является настройка реле давления и гидроаккумулятора (Рис.1). От правильно выставленных пределов зависит не только удобство пользования системой водоснабжения, но и продолжительность эксплуатации некоторых элементов насосной станции.




    Часто возникает впечатление, что все те советы, которые можно найти в сети Интернет по настройке давлений, не просто далеки от реальности, но и вредны, так как не соответствуют действительности. Вот и приходится каждому разбираться в принципах работы и настройке самостоятельно. В данной статье приводится порядок действий по настройке давлений, следуя которым удалось отрегулировать работу насосной станции, активно эксплуатируемой уже пятый год.








Рис2. Крышка золотника

Гидроаккумулятор – не только вода. Немного теории




    Внутри металлического бака гидроаккумулятора (ГА) находится резиновая емкость (груша). Насос нагнетает воду именно в грушу. В пространство между стенками бака и емкостью через золотник закачивается воздух. Чем больше воды в груше, тем сильнее сжат воздух и тем выше его давление, стремящееся вытолкнуть воду обратно. Также существуют мембранные модели ГА, в которых металлический бак разделен пополам мембраной, с одной стороны которой находится воздух, а с другой вода.








Рис3. Проверка давления

Практика. Воздух




    Итак, вот он – купленный гидроаккумулятор. Прежде всего, необходимо определить давление воздуха в нем. Несмотря на то, что производитель, обычно, накачивает 1,5 Атмосферы, бывают случаи, когда из-за утечки к моменту продажи это значение намного ниже. Обыкновенный автомобильный золотник закрыт декоративным колпачком (Рис. 2). Откручиваем его и проверяем давление в баке (Рис.3). Чем проверять? Так как погрешность даже в 0,5 атм. существенно влияет на работу всей системы, то чем выше точность используемого для проверки манометра, тем лучше. На рынке представлены три вида таких манометров: электронные, механические автомобильные (корпус металлический) и пластиковые, идущие в комплекте с некоторыми насосами. Последние дают огромную погрешность, поэтому для ГА их лучше не использовать. Обычно они китайского происхождения, в непрочном пластиковом корпусе. На показания электронных влияют температура и заряд батареи, к тому же их стоимость довольно высока. Поэтому используем обычный автомобильный манометр, желательно прошедший поверку. Чем на меньшее значение градуирована шкала, тем лучше. Например, если шкала рассчитана на 20 атм., а измерить нужно всего 1-2, то высокой точности измерения ждать не стоит.








Рис4. Реле давления

    Меньшее количество воздуха в баке означает больший запас воды, но разброс давления при закачанном и почти опустошенном баке будет довольно велик. Тут все зависит от предпочтений. Если необходимо, чтобы давление воды в водопроводе постоянно было высоким (городским), то воздуха в баке должно быть не менее 1,5 атм. Соответственно, кто-то может решить, что напор даже в одну атмосферу для бытовых нужд вполне достаточен. В первом случае ГА запасает меньше воды, что означает частое включение подкачивающего насоса и потенциальные проблемы при отсутствии электричества, так как нет запаса воды. А во втором жертвовать приходится давлением: при заполненном баке можно принять душ с массажем, а по мере уменьшения воды удобна будет только ванна.




    Определившись с желаемым режимом работы, следует либо стравить лишний воздух, либо подкачать. Не рекомендуется уменьшать давление ниже 1 атм., а также слишком перекачивать. Недостаточное количество воздуха означает, что наполненная водой груша может локально тереться о стенки бака, постепенно повреждаясь. В то же время, избыток воздуха не позволит закачать много воды, так как существенная часть объема ГА будет занята им.




Реле давления




    Открываем крышку реле давления (Рис.4). Здесь доступна настройка верхнего и нижнего пределов срабатывания, то есть, значений давления, при которых насос будет отключаться и включаться. Две гайки и две пружины: большая (P) и малая (дельта P). Большая пружина отвечает за нижний предел или за давление включения насоса, что одно и то же. Из конструкции видно, что ее действие словно помогает воде замкнуть контакты.




    Малая позволяет выставить разницу давлений. Кстати, это говорится во всех инструкциях, однако не указывается, что является точкой отсчета. Так вот, основным является нижний предел, то есть гайка пружины «P». Пружина разницы давлений, конструктивно, сопротивляется давлению воды: она отталкивает подвижную пластину вниз, от контактов.




Практика. Вода




    После выставления нужного значения давления воздуха, подключаем ГА к системе и включаем в работу, внимательно следя за водяным манометром. На каждом ГА указаны значения рабочего и предельного давлений – их превышения недопустимо. Также в техническом паспорте к насосу указывается его напор (в метрах): 10 м соответствует 1 атмосфере. Насос должен быть вручную отключен от сети при:




  • достижении рабочего давления ГА;



  • достижении предельного значения напора насоса. Это просто определить – рост давления прекращается.



    Обычно, мощности насосов не позволяют накачать бак до предела, да и необходимости в этом нет, так как снижается ресурс, как насоса, так и груши. В большинстве случае значение давления отключения выбирается на 1-2 атм. выше, чем включения.




    Например, манометр показывает 3 атм., что, по мнению владельца насосной станции, достаточно для его нужд. Отключаем насос и медленно вращаем гайку «дельта P» на уменьшение, пока механизм не сработает.




    Открываем кран и сливаем воду из системы. При этом наблюдаем за манометром и значением, при котором реле включится – это давление включения насоса (нижний предел). Оно должно быть немного больше (на 0,1-0,3 атм.) давления воздуха в пустом ГА. Благодаря этому груша прослужит дольше. Вращая «P», выставляем нижний предел, снова включаем насос в сеть и ждем, пока не будет достигнуто нужное давление. Подстраиваем гайку «дельта P». Гидроаккумулятор настроен.




    Раз в 1 — 3 месяца необходимо в обязательном порядке проверять давление воздуха. Вода из бака при этом должна быть слита (отключаем насос от сети и открываем краны).

 




Рекомендуемая продукция нами

насосы grundfos sq, grundfos sqe, grundfos sololift2 wc-1, grundfos sololift2 wc-3

Как отрегулировать давление в насосной станции — Насосная станция

Канализация и водопровод – неотъемлемая часть комфортного быта. Чтобы обеспечить себя благами цивилизации даже на даче, многие приобретают специальные насосы. Эти устройства обеспечивают должный напор воды, используемой для бытовых и хозяйственных нужд. Со временем заводские установки сбиваются, поэтому появляется необходимость в такой процедуре как регулировка реле давления насосной станции (НС).

Реле давления представляет собой автоматизированный датчик, управляющий включением и выключением насоса. Как правило, производитель поставляет насосы с уже откалиброванным реле:

  • давление включения устанавливается на отметке 1,5 -1,8 атмосфер (бар)
  • давление отключения – 2,5-3 атмосфер.

Коррекция режима работы достигается изменением этих настроек. При этом обязательно должны учитываться объем гидроаккумулярора и требуемый напор воды. В реле давления есть две регулировки:

  • Прижимная гайка P – установка верхнего предела давления, по достижении которого насос отключается.
  • Прижимная гайка ΔP (дельта Р) – отвечает за нижний уровень давления, то есть включение оборудования (перепад давления).

Чтобы понять, как проводится регулировка и настройка реле, нужно знать принцип работы комплектной насосной станции. Итак, помпа закачивает воду в гидроаккумулятор, увеличивая тем самым уровень давления воды в главном баке. Отслеживается этот показатель по манометру. Далее, по достижении заданного уровня Р в реле размыкаются контакты и насос отключается. Жильцы, используя воду, постепенно уменьшают давление в баке, по достижении нижней отметки ΔP помпа включается, процесс повторяется.

Расчет нижнего предела давления – момент включения НС

Любая калибровка начинается с самого начала – определения минимально требуемого давления в кране, находящегося на самой высокой точке системы водоснабжения. К примеру, требуемый уровень в кранах на 2 этаже вашего дома – 2 бара. При этом помните о том, что давление в 1 бар создает столб воды, высота которого составляет 10 м.

Разумеется, на первом этаже давление будет выше. Просчитайте высоту, на которую будет подниматься вода от гидроаккумулятора до крайней точки водозабора. Если перепад, предположим, составил 8 м, то давление составит 0,8 бар. Дальше простая математика: сложить величину требуемого давления на втором этаже и высоту водяного столба, получится минимальное давление в трубах на уровне гидроаккумулятора. В нашем примере это 2,8 бар.

Далее следует определить давление воздуха в баке гидроаккумулятора. Хорошо использовать для этого шинный насос с манометром. При этом емкость должна быть пустой, а станция отключена от сети. Иначе сложно будет понять, на какое суммарное давление воздуха и воды настроено реле: в соотношение 2:1, или 1,5:1,5.

В соответствии в рекомендациями известного производителя насосного оборудования Грюндфос, подпорное давление в газовой полости должно составлять не менее 90% от расчетного минимального уровня. То есть, если брать данные примера, показатель составит 2,8х0,9=2,52 бара. Чтобы достичь нужного значения, необходимо стравить лишний воздух или наоборот, подкачать автонасосом.

Регулировка верхнего и нижнего давления осуществляется аккуратным, постепенным вращением прижимных гаек: по часовой стрелке для увеличения показателя, против часовой – для уменьшения. При этом некоторые заводы-изготовители рекомендуют уровень включения выставлять на 0,1 бар выше желаемого, то есть в примере эта величина составит 2,9 бара.

Проверить достаточно просто: когда система включена, открываем кран, сливаем воду из бака и отслеживаем по водяному манометру тот момент, когда реле включит насос. Минимальный предел давления воздуха в гидроаккумуляторе – 0,78 бар.

Расчет верхнего уровня давления – момент выключения НС

Теперь нужно определиться с верхним давлением, то есть моментом, когда реле будет отключать насос. Мастера, как правило, выставляют разницу между точками включения и выключения до 1 бара. Объясняется это тем, что вода в смесителях будет выдаваться одной температуры. Конечно, пользователям удобно. Есть одно «но»: гидроаккумулятор будет слишком часто запускаться и глохнуть, что негативно сказывается на сроке бесперебойной службы устройства.

Именно поэтому, согласно расчетам производителей, разнос между Pи ΔP должен составлять не менее 1,4 бар при любых значениях давления. Для нашего примера получается 2,9+1,4=4,3 бара.

Устанавливая значения Pи дельта-P, обязательно надо учитывать предельное давление, на которое рассчитан гидроаккумулятор и стараться не превышать его. Данные, как правило, указываются в техническом паспорте изделия. Кроме того, слишком высокое давление может негативно сказаться на смесителях и резиновых подводных шлангах, для которых также устанавливается максимально допустимый уровень.

Большинство проблем с регулировкой давления и работой реле связаны с нарушением работы мембраны гидроаккумулятора. Нарушение режима включения-отключения происходит из-за того, что мембранная камера в отсутствии воды лежит на дне бака. Поскольку в ее составе есть бутилкаучук, в неработающем механизме она слипается и перестает выполнять свои функции. Проблема устраняется путем осторожного продувания: стравливается воздух из аппарата до 0,5 бар, включается насос и постепенно накачивается до 1 бара воды. Мембрана расправится. Следом уже по схеме: слить воду, заново накачать воздух при помощи автонасоса. Дальнейшая регулировка реле будет осуществляться без проблем.

Особенности регулировки реле НС от разных производителей

Приведенная схема регулировки является классической. Однако, настройка реле насосных станций разных изготовителей немного отличается с учетом особенностей продукции.

Так, для насосов Джилекс Джамбо характерно применение механического устройства РДМ-5, в конструкции которого предусмотрена еще одна дополнительная пружина, заключенная в пластиковую рамку. Предназначена для фиксации регулировочных гаек в установленных пределах, то есть своеобразный защитный механизм, не допускающий изменение точек включения-выключения насосной станции.

Аналогично предыдущему виду, регулируются помпы от Калибр и Алко.

Насосы от «Marina» (Марина) имеют стандартные заводские установки: Р – 1,5 атм, ΔP – 3 атм. предельное давление – 3,2 атм. Со временем пружины ослабляются, поэтому их требуется раз в полгода подтягивать до нужного уровня по стандартной схеме, но не выставляя на максимум. В противном случае механизм изнашивается очень быстро.

Насосные станции от Pedrollo имеют регулируемое давление 1,4-2,8 бар. Перед настройкой реле нужно измерить давление воздуха в гидроаккумуляторной емкости. Цифра должна быть ниже уровня минимального давления на 0,2 бара. В остальном регулировка идет по общему принципу.

Компания Grundfos более ответственно подходит к регулировке реле своих насосных станций, поэтому завод обязывает дилеров проверять и настраивать продукцию при покупателе. Безусловное требование: разница между Р и ΔP должна составлять 1-1,5 бар. При этом каждому клиенту рекомендуется проверять настройки раз в год.

насосные станции водоснабжения бытовые

насосную станцию

ремонт насосных

какая лучше насосная станция

регулировка насосной станции

как делается правильно — Насосная станция

Насосная станция с частотным регулированием

Регулировка автоматики насосной станции изначально выполняется производителем на определенную величину давления при включении и отключении оборудования. Обычно значения таких заводских установок составляют от 1,5 до 1,8 бар при включении и от 2,3 до 3 бар при выключении.

Устройство реле давления для насосной станции

Прежде чем начинать регулировку реле давления необходимо ознакомиться с его устройством и принципом работы.

Конструкция реле давления

На фото представлена конструкция устройства.

Ее основные элементы:

  • 1 и 2 – регуляторы пружин.
  • 3 – основание прибора.
  • 4 – гайка, фиксирующая реле к переходнику и крышку мембраны.
  • 5 – колодка с клеммами для подключения сети 220V, самого насоса и его заземления.

К металлическому основанию снизу крепится мембранная крышка, под которой находится мембрана и поршень с быстросъемной гайкой поз. 4. Сверху находится контактная группа, колодки для клемм и два регулятора пружин разных размеров.

Все элементы сверху закрываются пластиковой крышкой, прикрепляемой к винту большого регулятора и которая, в зависимости от модели, легко снимается отверткой или гаечным ключом.

Разные модели изделий, цена которых не сильно колеблется, могут отличаться по размерам, форме, расположению составляющих элементов, но большая их часть имеет вышеописанную конструкцию. В некоторые из изделий включаются дополнительные элементы, такие как рычаг включающий защиту от «сухого хода».

Как работает реле

Реле работает по такому принципу:

  • Конструкция реле устроена так, что шарнир и платформа не могут располагаться в одной плоскости.
  • При поднятии платформы выше шарнира, скачком контакты опускаются вниз, а при опускании ниже его плоскости элементы сразу же перещелкиваются вверх.
  • Расположение плоскости этого шарнира немного выше, чем основание пружины малого регулятора, позволяет подниматься платформе без размыкания контактов до этого уровня, а при достижении его, под действием пружин этих двух регуляторов, контакты будут размыкаться и насос выключаться.
  • При этом, большой пружинный регулятор, таким образом, отвечает за момент включения агрегата или за «нижнее» давление (P), а поменьше — за разницу давлений выключения и включения (∆P).
  • При сжатии пружины большого регулятора, что выполняется закручиванием гайки по часовой стрелке, происходит ее действие большей силой на платформу контактной группы, что вызывает возрастание «нижнего» давления.

Как регулируется самостоятельно реле давления

Перед тем как отрегулировать автоматику насосной станции необходимо подготовить отвертку или гаечный ключ, чтобы снять крышку реле и ключ для закручивания или откручивания регуляторов гаек.

После этого инструкция проведения работ своими руками выглядит следующим образом:

  • Отключается от напряжения реле давления.
  • Снимается пластиковая крышка реле и производится его регулировка в зависимости от ее цели:
  1. повышение давления;
  2. понижение;
  3. изменение диапазона срабатывания оборудования.
  • Под крышкой смонтированы два пружинных регулятора, отвечающие за нижнее и верхнее давление.

Для повышения или уменьшения давление в сети необходимо:

  • Просто закрутить или открутить гайку на большем регуляторе.
  • После изменения регулировки, крышка закрывается.
  • Включается напряжение.
  • Открывается кран и по манометру, встроенному в насосной станции, определяется, давление при котором включается насос или «нижнее».
  • Закрывается кран и проверяется по манометру «верхнее» давление при отключении насоса.

Совет: При удовлетворительных показателях давления регулировка считается оконченной. Если нет, все повторяется снова.

Как изменить диапазон срабатывания реле

Если «нижнее» давление нормальное, а необходимо лишь увеличить или уменьшить «верхнее», нужно использовать меньший регулятор.

При этом:

  • Закручивание для этого регулятора гайки по часовой стрелке приведет к увеличению «верхнего» давления, при неизменном «нижнем».
  • Откручивание – наоборот: при этом будет уменьшаться или увеличиваться разница между ними — ∆P.
  • После изменения регулировки, включается питание и замечается по манометру момент, когда отключается насос — «верхнее» давление.
  • При удовлетворительных результатах, регулировку на этом можно прекратить, если нет — процесс повторяется до получения нужного результата.

Совет: Необходимо учитывать, что увеличение ∆P позволяет насосу реже включаться, но в этом случае в сети водоснабжения возникнут более заметные перепады давления, а при уменьшении его, наоборот, будет выравнивание его в системе, но включаться насос при этом будет чаще, что приведет к уменьшению срока его эксплуатации.

Если не устраивает одновременно и «нижнее» давление и диапазон срабатывания реле, необходимо сначала выполнить регулировку большим регулятором, а после этого — меньшим, весь процесс при этом контролируется по манометру станции.

Что учитывается при выполнении регулировки

Регулируя самостоятельно работу реле оборудования необходимо учитывать такие важные моменты:

  • Нельзя «верхнее» давление, составляющее более 80% от максимального для изделия, устанавливать на данной модели. Как правило, оно указано на упаковке или в инструкции, и составляет от 5 до 5,5 бар.

Для установки более высокого уровня в системе частного дома, необходимо подобрать реле у которого большее максимальное давление.

  • Перед повышением давления для включения насоса необходимо познакомиться с его характеристиками, сможет ли он развивать такое давление. В противном случае, если его создать нельзя, агрегат не будет выключаться, а реле его отключить не сможет, потому что нельзя достигнуть установленного предела. Напор насоса измеряется в метрах водяного столба: 1 м. вод. ст. = 0,1 бар. Помимо этого, учитываются и гидравлические потери во всей системе.
  • Нельзя закручивать до отказа гайки регуляторов при регулировании, иначе реле может совсем перестать срабатывать.
  • Влияние давления воздуха в баке

    От величины давления воздуха в гидроаккумуляторе(см. Схема подключения гидроаккумулятора к погружному насосу: какая лучше ) оборудования зависит его нормальная работа, но оно никакого отношения не имеет к регулировке реле. Оно в любом случае начнет срабатывать при определенном «нижнем» и «верхнем» давлении, независимо от его наличия в баке.

    При отсутствии воздуха в мембранном баке может привести лишь к полному заполнению водой и давление в системе начнет повышаться моментально до «верхнего» и насос будет сразу же отключаться, после прекращения забора жидкости. При каждом открытии крана насос включается, оно будет сразу падать до «нижнего» предела.

    При отсутствии гидроаккумулятора реле будет срабатываться все равно. Пониженное давление воздуха приводит к сильному растягиванию мембраны, а повышенное — к недостаточному заполнению бака водой. В этом случае избыточное давление воздуха станет вытеснять жидкость.

    Для нормальной работы насосной станции и долгой службы мембраны, необходимо, чтобы давление воздуха было на 10% меньше «нижнего», установленного при регулировке. Тогда гидроаккумулятор будет нормально заполнен водой, а мембрана слишком растягиваться не будет, а значит ее надолго хватит. Насос при этом будет включаться с интервалами, соответствующими отрегулированному в реле ∆P.

    Помимо этого, необходимо проверять давление воздуха в баке насосной станции при отсутствии в нем давления жидкости. В этом случае нужно открыть кран, расположенный в системе ниже всего, и слить всю воду.

    Подробности регулировки реле давления хорошо показывает видео в этой статье.

    Совет: При настройке реле давления нужно помнить, что гидроаккумулятор или бак, сантехника, все шланги и механика реле обладают своими предельными значениями давления, которые нельзя превышать.

    Соблюдая такие простые рекомендации, насосная станция будет долго эксплуатироваться в исправном состоянии.

    насосные станции для колодца

    насосная станция с автоматикой

    реле давления для насоса регулировка

    выбираем насосную станцию

    электродвигатель для насосной станции

    Настраиваем реле давления с двумя пружинами.Пошаговая инструкция для абсолютных чайников

    Настройка реле давления — процесс простой, но не очень адекватный. Надо помнить всегда, что когда мы закручиваем пружины, мы увеличиваем и давление отключения и давление включения одновременно.

    Дмитрий Белкин

    Автор: Дмитрий Белкин

    Что необходимо иметь ввиду перед началом работы?

    Давайте условимся о терминах.

    Большая пружина и малая пружина. Пружины очевидным образом отличаются по размеру. Если в вашем реле не две пружины и если их нельзя явно различить по размеру, то эта инструкция, возможно, не будет вам полезна! Имейте это ввиду при дальнейшем чтении

    Реле давления со снятой крышкой

    Закручивание пружины (большой или малой). Это закручивание гайки, которая сжимает пружину. В процессе закручивания пружина сжимается

    Откручивание пружины (большой или малой). Это действие, обратное закручиванию.

    Ваша система должна быть оснащена манометром. Это важно. Мы будем им пользоваться при настройке.

    Бак гидроаккумулятор должен быть накачан. Давление в баке (при полностью слитой системе) должно составлять величину, на 1-2 десятые атмосферы ниже желаемого давления включения.

    Фильтры, имеющиеся в системе, должны быть прочищены.

    В этой инструкции мы не касаемся вопросов сборки станции и заливки ее водой. Считаем, что у нас все подключено и работает правильно. Только реле надо настроить и все.

    Если насосная станция работала нормально, но внезапно что-то разладилось

    Всегда в таких случаях проверяем утечки, прочищаем фильтры, проверяем давление в баке аккумуляторе. Без этих простейших мер в реле не лазим.

    Если насосная станция работала нормально, но постепенно стала работать все хуже и хуже, и наконец, перестала включаться или выключаться.

    Все то же самое! Проверяем фильтры, утечки, давление в баке. Если станция стала включаться и выключаться неадекватно, то это явно давление воздуха в баке виновато. Если давление воды в системе достигает максимума, насос работает еще довольно долго и только потом выключается, то это типичный случай засора. Засоры бывают либо в фильтрах (чаще всего), либо в самых узких местах. Например, на входе в реле давления. Тогда прежде чем регулировать давление, надо найти и прочистить засор.

    Случай первый. Новое реле из коробки, или тонкая регулировка реле давления

    Подготовительный этап

    1. Выключаем насос из розетки (если есть выключатель, то выключаем его)
    2. Спускаем всю воду из системы. Открываем кран, ждем, пока вода перестанет течь. На манометре должен быть ноль. Закрываем кран.
    3. Включаем насос. Он начинает работать. Смотрим на манометр. Давление в процессе работы насоса должно расти. Бары на манометре — можно считать за атмосферы.
    4. Насос должен выключиться. Смотрим на манометр. Запоминаем или записываем это давление отключения.
    5. Открываем кран и спускаем воду не слишком большой струей. Запоминаем показание манометра, на котором насос включается.

    Регулируем давление включения насоса

    1. Чтобы увеличить давление включения насоса ЗАКРУЧИВАЕМ БОЛЬШУЮ пружину.
    2. Сразу проверяем. Для этого спускаем воду до включения насоса. Обращаем внимание на давление отключения. Оно тоже должно увеличиться
    3. Повторяем операции с БОЛЬШОЙ пружиной до тех пор, пока нас не устроит давление ВКЛЮЧЕНИЯ насоса.

    Для уменьшения давления включения мы действуем по вышеприведенной схеме, только пружину откручиваем, а не закручиваем.

    Для чего мы в подготовительном этапе запоминали или записывали показания манометра? Только чтобы понимать ситуацию. Для представления о текущем положении дел. Мы же поставили новое реле и включаем его в первый раз! Нам надо иметь представление, что как работает и работает ли вообще.

    Регулируем давление отключения насоса

    1. Чтобы увеличить давление отключения насоса ЗАКРУЧИВАЕМ МАЛУЮ пружину. Закручивать ее нужно значительно менее активно, чем большую. Она куда более чувствительна.
    2. Помним, что малая пружина задает не конкретное давление отключения, а разницу, между давлением включения и отключения. Разница только в том, что при закручивании (откручивании) большой пружины давление отключения будет изменяться синхронно с давлением включения.
    3. Сразу проверяем, что получается.
    4. Повторяем операции с МАЛОЙ пружиной до тех пор, пока нас не устроит давление ВЫКЛЮЧЕНИЯ насоса.

    Случай второй. Насос включается нормально, на нужном давлении, но не выключается.

    1. Даем насосу поработать. Смотрим на манометр. Давление не должно расти вечно. Оно остановится на каком-то максимуме и выше не поднимется. Например, 3.8 атмосфер (бар)
    2. Выключаем насос и спускаем немного давление (открывая кран воды) до нужного давления выключения. Например, 3.2 атмосфер (бар). Понятно, что это давление должно быть выше давления включения (например, наше давление включения 2 атмосферы)
    3. ОТКРУЧИВАЕМ МАЛУЮ пружину, пока реле не перещелкнется.
    4. Переходим к регулировке давления отключения и тонкой настройке из первого случая выше.

    Случай третий. Насос не включается.

    1. Выключаем насос. Открываем краны, даем воде вытечь. Реле до сих пор не включилось?
    2. Реле неисправно. Меняем его

    Случай четвертый. Реле полностью разрегулировано. Мы не знаем ни давления включения, ни выключения. Пружины полностью раскручены или полностью закручены и мы уже ничего не можем сообразить.

    1. Раскручиваем малую и большую пружины. Не полностью, конечно! Просто откручиваем значительно. Гайку, которая держит ту или иную пружину не снимаем.
    2. Устанавливаем давление в системе на необходимое давление включения (1.5 атмосферы, например). Для этого накачиваем больше, выключаем мотор из розетки и спускаем воду до нужного давления по манометру.
    3. ЗАКРУЧИВАЕМ БОЛЬШУЮ пружину до тех пор, пока реле не выключится. Таким образом, мы настроили давление ВКЛЮЧЕНИЯ насоса на 1.5 атмосферы. Если давление опустится менее этого значения, реле должно включиться.
    4. Закручиваем большую пружину, чтобы она была только чуть-чуть закручена. Просто выбираем слабину.
    5. Далее переходим к инструкции по случаю 2. Выполняем ее с первого пункта и до последнего.

    Надеюсь, материал был полезен.
    Дмитрий Белкин

    Статья создана 28.06.2014

    Статьи: настройка реле давления и регулировка воздуха в гидроаккумуляторе

    Реле давления — элемент который управляет работой насосной станции (например AQUAJET или AQUAJET-INOX) и который делает возможной её работу в автоматическом режиме. Реле давления имеет несколько характеристик:

    • Давления включения (Pвкл) — это то давление (бар), при котором происходит включение насосной станции путем замыкания контактов в реле давления. Иногда давление включения еще называют „нижним“ давлением.
    • Давление выключения (Pвыкл) — это давление (бар), при котором происходит выключение насосной станции путем размыкания контактов в реле давления. Иногда давление выключения еще называют „верхним“ давлением.
    • Перепад давления (ΔP) — абсолютная разница между давлением выключения и давлением включения (бар).
    • Максимальное давление выключения — это то максимальное давление (бар), при котором возможно отключение насосной станции.

    Любое реле давления имеет заводские установки и, как правило, они следующие:

    Давление включения: 1,5-1,8 бар

    Давление выключения: 2,5-3 бар

    Максимальное давления выключения: 5 бар

    Как все это работает:

    Допустим, насосная станция подключена (об этом в статье «Подготовка насосной станции DAB к работе»), и вся система заполнена водой. После открытия любого крана (душ, мойка и т.п.) и начала водоразбора, давление в системе начнет плавно (благодаря мембранному гидробаку) падать, что легко отследить по манометру. Все это время вода поступает потребителю из гидробака. При достижении „нижнего“ давления включения (его можно также отследить по манометру в момент включения насоса) контакты внутри реле давления замкнутся и насос запустится. Все остальное время водоразбора насос продолжает работать, подавая воду напрямую потребителю. После завершения водоразбора (все краны закрыты), насос все еще продолжает работать, только теперь вода подается не потребителю, а закачивается в гидробак (т.к. больше ей некуда деться) и давление плавно возрастает. При достижении давления выключения (можно легко отследить по манометру в момент остановки насоса) контакты внутри реле давления размыкаются и насос останавливается. При следующем водоразборе цикл повторяется. Все довольно просто.

    Но что делать если заводские установки реле давления не очень комфортны? Например: на верхних этажах давление падает очень заметно, или система очистки воды требует на входе не менее 2,5 бар, в то время как насос включается только при 1,5-1,8 бар.

    Настроить реле давление можно и самостоятельно:

    Записываем по манометру давление включения и выключения при работающем насосе. Отключаем питание от насоса и снимаем верхнюю крышку реле давления (как правило, отвернув один винт). Вы увидите два винта, один более большой, находится в верхней части реле, а второй, немного меньшего размера, находится под ним. Верхний винт отвечает за давление выключения и как правило рядом с ним находится буква «P» и стрелка со знаками «+» и «-». Затем вращаем винт в нужном направлении (если давление выключения необходимо поднять то вращаем по направлению знака «+», если опустить то в направлении знака «-»). Сколько вращать? Сделайте оборот (пол оборота, полтора — сколько хотите). После этого запускаем насос и смотрим, при каком давлении он выключится теперь. Запоминаем, выключаем питание насоса, и вращаем винт дальше, опять запускаем насос и записываем новое значение, таким образом приближаясь к нужному значению.

    Нижний винт отвечает за разницу между давлением выключения и давлением включения. Как правило рядом написано «ΔP» и находится стрелка со знаками «+» и &laquo-». Настройка разницы давлений аналогична настройке давления выключения. Остается только один вопрос, какой она должна быть? Разница между давлением включения и выключения обычно составляет 1,0-1,5 бар. Причем чем выше давление выключения, тем большей может быть эта разница. Например, при заводских установках Pвкл = 1,6 бар, Pвыкл = 2,6 бар разница составляет 1 бар, это как раз стандартное значение. Если мы хотим изменить заводские установки и поднять Рвыкл до 4 бар, то разницу можно сделать в 1,5 бар, т.е. Pвкл нужно установить на уровне 2,5 бар. Надо понимать, что чем больше эта разница, тем выше перепад давления в системе, что не всегда комфортно. Но в то же время, реже будет включаться насос, и больше воды поступит из гидробака до момента включения насоса.

    Это справедливо только в том случае, когда насос может обеспечить требуемое давление (смотрите характеристику насоса). Т.е. если насос может выдать по паспорту только 3,5 бар (с учетом всех видов потерь), то настройка реле давления на выключение 4 бар ничего не даст. Насос просто не сможет обеспечить требуемое давление и в данном случае будет работать не останавливаясь. И если нужно все-таки именно 4 бар, то придется менять насос на более мощный.

    Каким же все-таки должно быть давление воздуха в воздушной полости гидробака?

    Очень многие не задумываются, или же просто не знают, что нужно следить еще и за этим. К сожалению да, нужно, от этого напрямую зависит срок службы мембраны гидробака, а в конечном счете, и насоса.

    Замеряем давление воздуха в воздушной полости гидробака. Делаем это только на отключенном от системы гидробаке — отключаем питание насоса, открываем любой кран за насосом и ждем пока вода выйдет из гидробака. Либо замеряем на установке еще не подключенной к системе водоснабжения. Для этого снимаем декоративный колпачок с воздушного ниппеля гидробака и подсоединяем к нему обычный автомобильный манометр (для проверки давления в шинах автомобиля). Запоминаем это давление. (Как правило на небольших гидробаках, емкостью до 50 литров, это давление будет равно 1,5 бар). Теперь самое главное правило: давление воздуха в гидробаке должно быть меньше, чем давление включения насоса примерно на 10%. Т.е. если давление включения насоса составляет 1,6 бар, то давление воздуха должно составлять 1,4-1,5 бар. В большинстве случаев, это и есть те заводские установки о которых говорилось выше. Т.е. покупая готовую насосную станцию, вы уже имеете полностью настроенную систему. Но как только вы внесли изменения в заводские установки реле давления, необходимо всегда изменять и давление воздуха в гидробаке. Например, если вы установили Pвкл = 2,5 бар, Pвыкл = 3,5 бар, то необходимо и давление воздуха поднять до значения в 2,2-2,3 бар.

    Кстати, даже если вы ничего не меняли в заводских настройках, за давлением воздуха необходимо регулярно следить, или, хотя бы, контролировать его раз в год в начале дачного сезона. Важно чтобы это давление было постоянным, если же оно немного снизилось за зиму, его всегда можно поднять обычным автомобильным насосом до требуемого уровня.

    Все эти несложные операции не займут много времени, достаточно уделить им внимание один раз в год, тем более, что все окупится долгой и бесперебойной работой всей системы водоснабжения в целом.

    © 2007 DAB-SHOP.RU Настройка реле давления и регулировка давления воздуха в гидроаккумуляторе.

    Контроль и регулировка давления воздуха в гидроаккумуляторе

    Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

    Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т.ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

    1. ОСНОВНЫЕ ПОНЯТИЯ

    Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster.ru

    Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

    Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

    Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

    2. ОБЩИЕ ПОЛОЖЕНИЯ

    2.1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер.ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

    2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

    2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

    2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

    3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

    3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др. , передаются Пользователем Администрации Сайта с согласия Пользователя.

    3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

    3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

    3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

    3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

    3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

    4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

    4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

    4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

    4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

    4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

    • Обработка информации осуществляется на законной и справедливой основе;
    • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
    • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
    • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
    • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

    4.5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

    4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

    4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

    для физического лица:

    • номер основного документа, удостоверяющего личность Пользователя или его представителя;
    • сведения о дате выдачи указанного документа и выдавшем его органе;
    • дату регистрации через Форму обратной связи;
    • текст обращения в свободной форме;
    • подпись Пользователя или его представителя.

    для юридического лица:

    • запрос в свободной форме на фирменном бланке;
    • дата регистрации через Форму обратной связи;
    • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

    4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

    4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

    • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
    • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
    • защита от вредоносных программ;
    • обнаружение вторжений и компьютерных атак.

    5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

    5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

    5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

    • в целях удовлетворения требований, запросов или распоряжения суда;
    • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
    • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

    5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

    6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

    6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

    7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

    7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

    Реле давления насосной станции: принцип работы и регулировка

    Чтобы сделать в небольшом частном доме автономную систему водоснабжения, будет достаточно обычного насоса, скважинного или поверхностного, с подходящими характеристиками производительности. Но для дома, в котором проживает больше 4 человек, или для 2-3 этажного жилища потребуется устанавливать насосную станцию. Это оборудование уже имеет заводские настройки давления, но иногда их необходимо корректировать. Когда требуется регулировка насосной станции, и как это делать, будет рассказано ниже.

    Устройство насосной станции

    Чтобы правильно отрегулировать данное насосное оборудование, необходимо иметь хотя бы минимальное представление о том, как оно устроено и по какому принципу работает. Главное предназначение насосных станций, состоящих из нескольких модулей – это обеспечение питьевой водой всех точек водозабора в доме. Также данным агрегатам под силу автоматически повышать и поддерживать давление в системе на необходимом уровне.

    Ниже приведена схема насосной станции с гидроаккумулятором.

    В состав насосной станции входят следующие элементы (см. рисунок выше).

    1. Гидроаккумулятор. Выполнен в виде герметичного бака, внутри которого находится эластичная мембрана. В некоторых емкостях вместо мембраны установлена резиновая груша. Благодаря мембране (груше) гидробак делится на 2 отсека: для воздуха и для воды. Последняя закачивается в грушу или в часть бака, предназначенную для жидкости. Подключение гидроаккумулятора происходит на отрезке между насосом и трубой, ведущей к точкам водозабора.
    2. Насос. Может быть поверхностным или скважинным. Тип насоса должен быть либо центробежным, либо вихревым. Вибрационный насос для станции использовать нельзя.
    3. Реле давления. Датчик давления автоматизирует весь процесс, при котором вода подается из скважины в расширительный бак. Реле отвечает за включение и выключение двигателя насоса при достижении в баке необходимой силы сжатия.
    4. Обратный клапан. Препятствует вытеканию жидкости из гидроаккумулятора при отключении насоса.
    5. Электропитание. Чтобы подключить оборудование к электрической сети, для него требуется протянуть отдельную проводку с сечением, соответствующим мощности агрегата. Также в электрической цепи должна быть установлена система защиты в виде автоматов.

    Данное оборудование работает по следующему принципу. После открытия крана в точке водозабора вода из гидроаккумулятора начинает поступать в систему. Одновременно в баке происходит снижение сжатия. Когда сила сжатия снизится до величины, установленной на датчике, происходит замыкание его контактов, и двигатель насоса начинает работать. После прекращения потребления воды в точке водозабора, или при повышении силы сжатия в гидроаккумуляторе до необходимого уровня, происходит срабатывание реле на отключение насоса.

    Реле давления насосной станции

    Датчик в автоматическом порядке регулирует процесс откачки воды в системе. Именно реле давления отвечает за включение и отключение насосного оборудования. Он же контролирует уровень напора воды. Встречаются механические и электронные элементы.

    Механические реле

    Устройства такого плана отличаются простой и вместе с тем надёжной конструкцией. Они гораздо реже выходят из строя, чем электронные аналоги, потому как в механических реле перегорать попросту нечему. Регулировка происходит посредством смены натяжения пружин.

    Механическое реле давление регулируется натяжением пружин

    Механическое реле включает в себя пластину из металла, где закреплена контактная группа. Здесь же находятся клеммы для подключения устройства и пружины для регулировки. Нижняя часть реле отведена под мембрану и поршень. Конструкция датчика достаточно проста, поэтому с самостоятельной разборкой и анализом повреждений серьёзных проблем возникнуть не должно.

    Электронные реле

    Подобные устройства привлекают в первую очередь удобством пользования и своей точностью. Шаг электронного реле заметно меньше, чем механического, а значит, вариантов регулировки здесь больше. Но электроника, в особенности бюджетная, часто ломается. Поэтому излишняя экономия в этом случае нецелесообразна.

    Электронное реле давления воды

    Ещё одно явное преимущество электронного реле – это защита техники от холостого хода. Когда напор воды в магистрали будет минимальным, элемент некоторое время будет продолжать работать. Такой подход позволяет защитить основные узлы станции. Отремонтировать электронное реле своими силами гораздо сложнее: кроме технических знаний необходим специфический инструмент. Поэтому диагностику и обслуживание датчика лучше предоставить профессионалам.

    Характеристики устройства

    В зависимости от модели станции и её типа устройство может располагаться как внутри корпуса, так и крепиться снаружи. То есть, если оборудование идёт без реле, или его функционал не устраивает пользователя, то всегда есть возможность подобрать элемент в отдельном порядке.

    Датчики также различаются по максимально допустимому давлению. Добрая половина классических реле настроены на 1,5 атм для запуска системы и 2,5 атм на её деактивацию. Мощные бытовые модели имеют порог в 5 атм.

    Когда речь идёт о внешнем элементе, то здесь крайне важно учесть характеристики насосной станции. Если оперировать слишком высоким давлением, то система может не выдержать, и как следствие появятся протечки, разрывы и скорый износ мембраны. Поэтому так важно отрегулировать реле именно с оглядкой на критичные показатели станции.

    Особенности работы

    Рассмотрим принцип работы устройства на примере одного из самых распространённых реле для насосных станций – РМ-5. В продаже также можно встретить зарубежные аналоги и более продвинутые решения. Подобные модели укомплектованы дополнительной защитой и предлагают расширенные функциональные возможности.

    РМ-5 включает в себя подвижную металлическую основу и пару пружин с двух сторон. Мембрана в зависимости от давления двигает пластину. Посредством прижимного болта можно отрегулировать минимальные и максимальные показатели, при которых техника включается или отключается. РМ-5 оснащён обратным клапаном, поэтому вода при деактивации насосной станции не сливается обратно в скважину или колодец.

    На рынке также можно встретить заводские и любительские модификации РМ-5. Реле усиливают, дополняют какими-то защитными элементами и функционалом.

    Поэтапный разбор работы датчика давления:

    1. По открытию крана вода начинает поступать из бака.
    2. По мере убывания жидкости в насосной станции давление постепенно снижается.
    3. Мембрана воздействует на поршень, а он в свою очередь замыкает контакты, включая технику.
    4. По закрытию крана бак наполняется водой.
    5. Как только показатель давления достигает максимальных значений, оборудование отключается.

    От имеющихся установок зависит периодичность работы насоса: как часто он будет включаться и отключаться, а также уровень давления. Чем меньше промежуток между запуском и деактивацией оборудования, тем дольше прослужат основные узлы системы и вся техника в целом. Поэтому так важна грамотная регулировка реле давления.

    Но на работу оборудования влияет не только датчик. Случается, что устройство настроено правильно, но другие элементы станции сводят на нет работу всей системы. К примеру, проблема может быть из-за неисправного двигателя или засора коммуникаций. Поэтому к осмотру реле стоит подходить после диагностики основных элементов, особенно если речь идёт о механических датчиках. В доброй половине случаев для устранения проблем с разбросом давления достаточно почистить реле от скопившейся грязи: пружины, пластины и контактные группы.

    Когда требуется регулировать реле

    Как было сказано выше, реле автоматизирует процесс закачивания жидкости в систему водопровода и в расширительный бак. Чаще всего насосное оборудование, купленное в готовом виде, уже имеет базовые настройки реле. Но возникают ситуации, когда требуется срочная регулировка давления насосной станции. Выполнять данные действия придется в случаях, если:

    • после запуска двигателя насоса, он сразу же отключается;
    • после отключения станции наблюдается слабый напор в системе;
    • при работе станции в гидробаке создается чрезмерная сила сжатия, о чем свидетельствуют показания манометра, но аппарат при этом не отключается;
    • не срабатывает реле давления, и насос не включается.

    Чаше всего, если у агрегата появляются вышеперечисленные симптомы, то ремонт реле не требуется. Нужно всего лишь правильно настроить данный модуль.

    Подготовка гидробака и его регулировка

    Перед поступлением гидроаккумуляторов в продажу в них на заводе закачивают воздух под определенным давлением. Закачка воздуха происходит через золотник, установленный на данной емкости.

    В среднем, давление в насосной станции должно быть таким: в гидробаках объемом до 150 л. — 1,5 бар, в расширительных баках от 200 до 500 л. — 2 бар.

    Под каким давлением находится воздух в гидробаке, можно узнать из этикетки, приклеенной к нему. На следующем рисунке красной стрелкой указана строка, в которой обозначено давление воздуха в накопителе.

    Также данные замеры силы сжатия в баке можно произвести, используя автомобильный манометр. Измерительный прибор подключается к золотнику бака.

    Чтобы начать регулировать силу сжатия в гидробаке, необходимо его подготовить:

    1. Отключите оборудование от электросети.
    2. Откройте любой кран, установленный в системе, и дождитесь момента, когда жидкость перестанет течь из него. Конечно же, будет лучше, если кран будет находиться недалеко от накопителя или на одном этаже с ним.
    3. Далее, замерьте силу сжатия в емкости, используя манометр, и запомните это значение. Для накопителей небольших объемов показатель должен быть около 1,5 бар.

    Чтобы правильно отрегулировать накопитель, следует учитывать правило: давление, вызывающее срабатывание реле на включение агрегата, должно превышать силу сжатия в накопителе на 10%. Например, реле насоса включает двигатель при 1,6 бар. Значит, необходимо создать и соответствующую силу сжатия воздуха в накопителе, а именно 1,4-1,5 бар. Кстати, совпадение с заводскими настройками здесь не случайно.

    Если датчик настраивается для запуска двигателя станции при большем, чем 1,6 бар силе сжатия, то, соответственно, и настройки накопителя меняются. Увеличить давление в последнем, то есть накачать воздух, можно, если воспользоваться насосом для накачки автомобильных шин.

    Совет! Коррекцию силы сжатия воздуха в накопителе рекомендуется проводить хотя бы 1 раз в год, поскольку за зиму она может снижаться на несколько десятых бар.

    Настройка реле давления

    Бывают случаи, когда настройки датчика по умолчанию не устраивают пользователей насосного оборудования. Например, если открыть кран на каком-либо этаже здания, то можно заметить, что напор воды в нем быстро снижается. Также установка некоторых систем, очищающих воду, невозможна, если сила сжатия в системе находится на уровне меньше 2,5 бар. Если станция настроена на включение при 1,6-1,8 бар, то фильтры в данном случае работать не будут.

    Обычно настройка реле давления своими руками не вызывает затруднений и выполняется по следующему алгоритму.

    1. Запишите показатели манометра при включении и отключении агрегата.
    2. Выдерните шнур питания станции из розетки или отключите автоматы.
    3. Снимите крышку с датчика. Обычно она закреплена 1 шурупом. Под крышкой можно увидеть 2 винта с пружинами. Тот, что больше, отвечает за давление, при котором происходит запуск двигателя станции. Обычно возле него стоит маркировка в виде буквы “Р” и нарисованы стрелки с нанесенными возле них знаками “+” и “-”.
    4. Чтобы увеличить силу сжатия, вращайте гайку по направлению к знаку “+”. И наоборот, чтобы снизить ее, нужно крутить винт к знаку “-”. Сделайте один оборот гайки в требуемом направлении и запустите аппарат.
    5. Дождитесь, пока станция отключится. Если показания манометра вас не устраивают, то продолжайте вращать гайку и включать аппарат до тех пор, пока давление в накопителе не достигнет требуемого значения.
    6. На следующем этапе следует настроить момент выключения станции. Для этого предназначен винт меньшего размера с пружиной вокруг. Возле него находится маркировка “ΔP”, а также нарисованы стрелки со знаками “+” и “-”. Настройка регулятора давления на включение устройства проводится так же, как и на отключение аппарата.

    В среднем, интервал между силой сжатия, при которой датчик включает двигатель станции, и значением силы сжатия, когда агрегат останавливается, находится в пределах 1-1,5 бар. При этом интервал может увеличиваться, если выключение будет происходить при больших значениях.

    Например, агрегат имеет заводские настройки, при которых Рвкл = 1,6 бар, а Рвыкл = 2,6 бар. Из этого следует, что разница не выходит за пределы стандартного значения и равна 1 бар. Если требуется по каким-либо причинам увеличить Рвыкл до 4 бар, то следует увеличить и интервал до 1,5 бар. То есть, Рвкл должно быть около 2,5 бар.

    Но при увеличении данного интервала увеличится и перепад давления в системе водоснабжения. Иногда это может вызывать дискомфорт, поскольку придется израсходовать большее количество воды из бака, чтобы станция включилась. Но благодаря большому интервалу между Рвкл и Рвыкл включение насоса будет происходить реже, что увеличит его ресурс.

    Вышеописанные манипуляции с настройками силы сжатия возможны только при наличии оборудования соответствующей мощности. К примеру, в тех. паспорте к аппарату указано, что он может выдать не более 3,5 бар. Значит, настраивать на нем Рвыкл = 4 бар не имеет смысла, поскольку станция будет работать без остановки, а давление в баке так и не сможет подняться до необходимого значения. Поэтому, чтобы получить давление в ресивере 4 бар и выше, необходимо приобрести насос соответствующей мощности.

    Контроль помпажа на насосных станциях

    В этом учебном пособии представлены основные принципы контроля помпажа и функции различных клапанов, связанных с насосными станциями.

    Водопроводы и распределительные системы почти ежедневно подвергаются скачкам, которые со временем могут вызвать повреждение оборудования и самого трубопровода. Скачки вызваны внезапными изменениями скорости жидкости и могут быть от нескольких фунтов на квадратный дюйм до пятикратного статического давления.Будут обсуждены причины и последствия этих скачков в насосных системах, а также оборудование, которое предназначено для предотвращения и рассеивания скачков. Будет сделана ссылка на типовые установки и примеры, чтобы можно было понять применимые ограничения.

    На рис. 1 показана типичная система перекачки / распределения воды, в которой два параллельных насоса забирают воду из мокрого колодца, а затем прокачивают воду через обратные и дроссельные клапаны в коллектор и распределительную систему насоса.Расширительный бак и предохранительный клапан показаны как возможное оборудование на коллекторе насоса для снятия и предотвращения скачков. Каждый из них будет рассмотрен более подробно.

    Причины и последствия

    Скачки вызваны внезапными изменениями скорости потока, которые являются результатом общих причин, таких как быстрое закрытие клапана, запуск и остановка насоса, а также неправильная практика заполнения. Трубопроводы часто сталкиваются с первым всплеском во время заполнения, когда воздух, выпускаемый из трубопровода, быстро выходит через ручной выпускной клапан или дроссельный клапан, за которым следует вода.

    Будучи во много раз плотнее воздуха, вода следует за воздухом к выпускному отверстию с высокой скоростью, но ее скорость ограничена выпускным отверстием, что приводит к скачку. Крайне важно, чтобы скорость потока заполнения тщательно контролировалась, а воздух выпускался через автоматические воздушные клапаны соответствующего размера. Точно так же линейные клапаны должны закрываться и открываться медленно, чтобы предотвратить резкие изменения расхода.

    Работа насосов и внезапная остановка насосов из-за перебоев в подаче электроэнергии, вероятно, имеют наиболее частое воздействие на систему и наибольшую вероятность возникновения значительных скачков напряжения.Если насосная система не контролируется или не защищена, загрязнение и повреждение оборудования и самого трубопровода могут быть серьезными.

    Последствия скачков напряжения могут быть как незначительными, например ослабление стыков труб, так и серьезными, например, повреждением насосов, клапанов и бетонных конструкций. Поврежденные соединения труб и условия вакуума могут вызвать загрязнение системы грунтовыми водами и обратным потоком. Неконтролируемые скачки также могут иметь катастрофические последствия. Разрывы линий могут вызвать затопление, а смещение линии может вызвать повреждение опор и даже бетонных опор и сводов.Потери могут исчисляться миллионами долларов, поэтому очень важно понимать и контролировать скачки с помощью соответствующего оборудования.

    Фон перенапряжения

    Будут представлены некоторые из основных уравнений теории помпажа, чтобы можно было получить представление об оборудовании для контроля помпажа. Во-первых, импульсное давление (H), возникающее в результате мгновенной остановки потока, прямо пропорционально изменению скорости и может быть вычислено следующим образом:

    H = ср / г

    где:

    H = импульсное давление, фут водяного столба

    a = скорость волны давления, фут / с

    v = изменение скорости потока, фут / с

    г = плотность, 32. 2 фут / с2

    Скорость волны давления (а) зависит от жидкости, размера трубы и материала трубы. Для стальной линии среднего размера это значение составляет около 3500 футов / с. Для труб из ПВХ скорость будет намного меньше. Для 12-дюймовой стальной линии с водой, протекающей со скоростью 6 футов / с, величина скачка от мгновенной остановки потока составляет:

    H = (3500 фут / с) (6 фут / с) / (32 фут / с2)

    H = 656 футов водяного столба

    Это импульсное давление в 656 футов (285 фунтов на кв. Дюйм) в дополнение к статическому давлению в трубопроводе; следовательно, результирующее давление, вероятно, превысит номинальное давление системы.Кроме того, это высокое давление будет поддерживаться в течение нескольких секунд, поскольку волна отражается от одного конца системы трубопроводов к другому концу, вызывая избыточное давление в уплотнениях труб и фитингов. Затем после отражения волна давления может вызвать отрицательное давление и вакуумные карманы на несколько секунд, позволяя загрязненным грунтовым водам попадать в систему через уплотнения или соединения.

    В системах с длинными трубопроводами достигаются даже более высокие скорости, чем скорость откачки.Если насосы внезапно останавливаются из-за сбоя питания, кинетическая энергия воды в сочетании с низкой инерцией насоса может вызвать разделение водяного столба в насосе или в высокой точке трубопровода. Когда водяные столбы возвращаются через статический напор линии, обратная скорость может превышать нормальную скорость. Результирующее импульсное давление может быть даже выше, чем рассчитанное выше 656 футов.

    Компьютерные программы анализа переходных процессов обычно используются для прогнозирования разделения колонок и фактических скоростей обратного потока и скачков.переходные программы могут также моделировать методы, используемые для управления разделением колонок, такие как использование расширительного бака, вакуумного прерывателя или воздушного клапана. Эти решения будут рассмотрены более подробно.

    До сих пор изменения скорости описывались как «внезапные». Насколько внезапными должны быть изменения скорости, чтобы вызвать скачки? Если изменение скорости происходит в течение периода времени, волна давления пройдет по длине трубопровода и вернется, изменение скорости можно считать мгновенным, и применимо уравнение для импульсного давления (S), приведенное ранее.Этот период времени, часто называемый критическим периодом, можно рассчитать по формуле:

    т = 2 л / год

    где:

    t = критический период, с

    L = длина трубы, фут

    a = скорость волны давления, фут / с

    Для более раннего примера 12-дюймовой линии критический период будет следующим для стального трубопровода длиной 4 мили:

    t = 2 (21 120 футов) / (3500 фут / сек)

    t = 12 сек

    Чтобы вызвать скачки, насос не должен останавливаться быстро, а клапан не должен закрываться мгновенно (или даже внезапно). Обычная остановка потока на 5 или 10 секунд может вызвать максимальный скачок в длительных насосных системах. Отсюда следует, что стратегии борьбы с помпажами должны применяться на всех протяженных трубопроводах.

    Насосы

    Снова обращаясь к Рисунку 1, ключом к управлению скачками в насосных системах является управление скоростью увеличения и уменьшения скорости потока в системе. Насосы должны быть рассчитаны на ожидаемый расход. Для удовлетворения различных требований к воде можно использовать несколько насосов.Негабаритные насосы могут нанести ущерб некоторым насосным системам.

    Доступны специальные системы управления двигателем насоса для медленного разгона и торможения насосов путем управления электрическим приводом насоса. Эти системы контролируют подачу и могут предотвратить скачки напряжения во время нормальной работы насоса. Однако после сбоя питания органы управления двигателем перестают работать, и насос немедленно отключается, что вызывает внезапную остановку потока.

    В некоторых конструкциях насосных станций используется несколько насосов, поэтому при запуске или останове одного из насосов остановленный насос оказывает незначительное влияние на общую скорость в трубопроводе.Тем не менее, эти станции также сталкиваются с серьезными последствиями перебоев в электроснабжении. Практически все насосные системы нуждаются в дополнительном оборудовании для защиты от скачков напряжения, чтобы предотвратить скачки напряжения после сбоя питания.

    Вертикальные насосы и воздушные клапаны для обслуживания скважин

    Вертикальные насосы, как показано на рисунке 2, поднимают воду из резервуара или колодца в трубопровод. Когда насос выключен, уровень всасывания воды ниже выпускного патрубка насоса. Колонна насоса наполняется воздухом после каждой остановки насоса.

    Воздушные клапаны играют важную роль в автоматическом удалении воздуха из колонны насоса и контроле скачков в колонне насоса. Если вертикальный турбинный насос запускается без воздушного клапана, воздух в насосной колонне будет подвергаться сжатию и продавливаться через обратный клапан в трубопровод, вызывая проблемы, связанные с воздухом. Воздушные клапаны для нагнетания насоса, называемые воздушными клапанами для обслуживания скважины, аналогичны воздушным / вакуумным клапанам, но оснащены либо дросселирующим устройством, либо устройством предотвращения захлопывания, и предназначены для выпуска воздуха при запуске насоса и впуска воздуха за насосом. неисправность.

    Как показано на Рисунке 3, воздушный клапан для обслуживания скважины представляет собой нормально открытый поплавковый клапан, который быстро сбрасывает воздух из колонны насоса. Когда вода попадает в клапан, поплавок автоматически поднимается и закрывается, чтобы предотвратить слив воды.

    Дросселирующие устройства предусмотрены на выходе 3-дюймовых и меньших клапанов для регулирования скорости выпуска воздуха, особенно с медленно открывающимися регулирующими клапанами насоса. Дросселирующее устройство регулируется с помощью внешнего винта для замедления подъема воды в колонне насоса.Однако после отключения насоса второй порт в верхней части дроссельного устройства обеспечивает полный поток в колонну насоса для сброса вакуума. Дросселирующее устройство с двумя портами важно, потому что оно обеспечивает полный вакуумный поток и предотвращает попадание загрязненной воды в трубопровод, что может произойти, если устройство имеет общие выхлопные и вакуумные соединения.

    Когда регулирующий клапан насоса с механическим приводом используется с вертикальным насосом, можно использовать выпускной воздушный клапан, оборудованный вакуумным прерывателем, как показано на рисунке 4.В этом случае запускается насос, и открытие регулирующего клапана задерживается на несколько секунд, так что выпускной воздушный клапан может медленно вытеснять воздух через маленькое отверстие.

    Во время процесса, колонна насоса станет под давление в головку насоса запорной и заставить воздух при высоком давлении. На мгновение захваченный воздух будет действовать как подушка, контролируя подъем воды в колонне насоса. Размер отверстия клапана позволяет контролировать подъем воды до безопасной скорости, обычно 2 фута / с.

    Обратные клапаны

    Еще одним ключевым элементом конструкции насосной системы является правильный выбор и работа обратного клапана нагнетания насоса. Каждый проектировщик насосной станции сталкивался с захлопыванием обратного клапана, вызванным внезапной остановкой обратного потока через закрывающий обратный клапан. Для предотвращения захлопывания обратный клапан должен закрываться очень быстро или очень медленно. Все, что посередине, — это нейтральная зона и повод для беспокойства.Но не менее важно, что клапан должен защищать насосную систему и трубопровод от внезапных изменений скорости, если это находится в пределах его функциональных возможностей. Обратный клапан также должен быть надежным и обеспечивать низкие потери напора.

    Мы подробно рассмотрим две категории обратных клапанов. Первые, быстрозакрывающиеся обратные клапаны, представляют собой общую категорию обратных клапанов, которые работают автоматически менее чем за секунду и без использования внешнего источника питания или сигналов от насосной системы.Другая категория — это регулирующие клапаны насоса, которые работают очень медленно (например, от 60 до 300 секунд), чтобы тщательно контролировать изменения скорости жидкости в трубопроводе.

    Быстро закрывающиеся обратные клапаны

    Быстро закрывающиеся обратные клапаны просты, автоматичны и экономичны, но часто страдают из-за проблемы с захлопыванием обратного клапана и, как следствие, скачком давления в системе. Если замедление прямого потока можно оценить, например, с помощью анализа переходных процессов в насосной системе, можно предсказать потенциал захлопывания различных обратных клапанов.Затем будут представлены несколько вариантов клапанов без гидрораспределителя, а их характеристики и стоимость можно будет использовать для выбора лучшего обратного клапана для конкретного применения.

    Самый распространенный тип обратного клапана — это традиционный поворотный обратный клапан. Поворотные обратные клапаны определены в AWWA C508 для гидротехнических сооружений и предназначены для быстрого закрытия, чтобы предотвратить обратное вращение насоса во время реверсирования потока.

    Традиционные поворотные обратные клапаны имеют седло под углом 90 градусов с длинным ходом и подвержены ударам.Таким образом, эти клапаны снабжены широким спектром аксессуаров, которые выходят за рамки стандарта AWWA C508. Наверное, самый распространенный аксессуар — это рычаг и грузик. Хотя обычно предполагается, что вес заставляет клапан закрываться быстрее, на самом деле он уменьшает захлопывание, ограничивая ход диска, но, в свою очередь, вызывает значительное увеличение потерь напора. Закрытие клапана также замедляется инерцией самого веса и трением набивки штока.

    В более тяжелых условиях иногда используется воздушная подушка, чтобы замедлить удар при закрытии клапана. Все видели, насколько эффективно работает воздушная подушка при хлопке штормовой двери. Но условия в трубопроводе существенно отличаются.

    Когда дверь захлопывается, ее импульс плавно поглощается воздушным цилиндром, потому что по мере замедления движения двери силы от закрывающей пружины и внешнего ветра становятся все меньше и меньше. И наоборот, когда обратный клапан в трубопроводе закрывается, обратный поток ускоряется с огромной скоростью, поэтому каждую долю секунды, когда закрытие клапана задерживается, силы на диске будут увеличиваться на порядок.

    Хотя это может быть правдой, что воздушная подушка предотвращает столкновение диска с седлом клапана в витрине с продукцией, на практике воздушная подушка просто удерживает диск открытым достаточно долго, чтобы обратный поток усилился и еще сильнее ударьте диск по седлу. Поскольку воздушные подушки основаны на использовании воздуха (который является сжимаемым), они не обеспечивают принудительного сдерживания закрывающего диска и не могут противодействовать огромным силам, создаваемым обратным потоком. В общем, наилучшая настройка воздушной подушки, как правило, — это когда выпускной игольчатый клапан полностью открыт и воздух удаляется с максимальной скоростью.

    Гораздо более эффективным приспособлением для управления движением обратного клапана поворота является масляная подушка, также называемая масляной заслонкой. Поскольку масло несжимаемо, масляная подушка будет выдерживать большие силы, оказываемые на диск обратным потоком, и должным образом контролировать последние 10 процентов закрытия клапана. Однако насос должен быть способен к некоторому значительному обратному потоку, потому что масляный бачок позволит обратному клапану пропускать часть потока обратно через насос.

    Поскольку силы обратного потока на тарелке клапана чрезвычайно высоки, давление масла часто превышает 2000 фунтов на кв. Дюйм, из-за чего клапаны с этими устройствами становятся дорогостоящими. Масляный цилиндр высокого давления стоит дорого, и поскольку он подвергает шток клапана высоким нагрузкам, часто требуется специальный обратный клапан. Поскольку насосы могут выдерживать только такой большой обратный поток, время закрытия дашпотов обычно ограничивается 1–5 секундами. Если в трубопроводе есть мусор или сточные воды, обратный клапан с масляной подушкой может действовать как экран в условиях обратного потока и быстро забивать трубопровод.

    Еще лучшим решением является выбор обратного клапана, который закрывается до появления значительного обратного потока, тем самым предотвращая захлопывание. Одним из таких клапанов является подпружиненный, «бесшумный» обратный клапан (SCV) с центральной направляющей, как показано на Рисунке 6. SCV почти защищен от взлома из-за его короткого линейного хода (1/4 диаметра), расположения клапана диск в потоке и сильная пружина сжатия. Однако выбор бесшумного обратного клапана имеет несколько недостатков, таких как высокая потеря напора, отсутствие индикации положения и ограничение для применения с чистой водой.

    На другом конце спектра находится обратный клапан Tilted Disc® (TDCV). TDCV, показанный на Рисунке 7, имеет наименьшие потери напора, поскольку площадь его порта составляет 140 процентов от размера трубы, а его диск похож на диск дроссельной заслонки, где потоку позволяют проходить по обеим сторонам диска. Этот клапан имеет надежные металлические седла и может быть оснащен масляными коллекторами, установленными сверху или снизу, чтобы обеспечить эффективные средства управления клапаном и минимизировать помпаж.Он полностью автоматический и не требует внешнего питания или электрического подключения к системе управления насосом.

    Другой вариант — обратный клапан с упругим диском, называемый обратным клапаном Swing-Flex® (SFCV). Единственная движущаяся часть SFCV — это гибкий диск. Этот клапан имеет 100-процентный канал, наклоненный под углом 45 градусов, что обеспечивает короткий ход 35 градусов, быстрое закрытие и низкую потерю напора. Он также доступен с механическим индикатором положения и концевыми выключателями. Surgebuster® (SB) имеет еще более быстрое закрывание благодаря добавлению дискового ускорителя, обеспечивающего характеристики закрытия SB, аналогичные бесшумным обратным клапанам.

    Имея все возможности обратного клапана, один доступен для каждой системы с низкими потерями напора и безударной работой. Характеристики закрытия всех типов обратных клапанов показаны для различных замедлений системы на Рисунке 9. Клапаны, кривые которых наиболее правы, имеют лучшие характеристики без захлопывания.

    Регулирующие клапаны насоса

    Даже если быстрозакрывающийся обратный клапан может предотвратить захлопывание, он не может полностью защитить насосные системы с длительными критическими периодами от изменений скорости во время запуска и остановки насоса.Для насосных систем с длительным критическим периодом часто используется регулирующий клапан насоса. Клапан управления насосом подключается к контуру насоса и обеспечивает регулируемое время открытия и закрытия сверх критического периода времени системы. Управление насосом клапаны с гидравлическим управлением, так что движение запорного элемента клапана (т.е. дроссельный клапан диска) не зависит от расхода или давления в линии. Кроме того, большинство работающих сегодня насосов имеют низкую инерцию вращения и останавливаются менее чем за 5 секунд.

    Регулирующий клапан насоса может быстро закрываться при отключении электроэнергии или отключении насоса, чтобы защитить насос. Однако, когда требуется быстрое закрытие, потребуется дополнительное оборудование для перенапряжения, как объясняется в следующем разделе. Однако сначала будут представлены критерии выбора регулирующих клапанов насоса.

    Список возможных регулирующих клапанов насоса длинный, потому что многие клапаны могут быть оснащены автоматическим управлением, необходимым для насосных систем.Обычно рассматриваются такие клапаны, как дисковые, пробковые, шаровые и шаровые регулирующие клапаны. Вероятно, наиболее распространенным критерием выбора клапана является первоначальная стоимость, но для насосных систем процесс выбора следует тщательно подбирать с учетом:

    • клапан и затраты на установку
    • затраты на прокачку
    • целостность сиденья
    • надежность
    • расходные характеристики

    Стоимость установки различных типов регулирующих клапанов насосов может сильно различаться.Например, 12-дюймовый дроссельный или плунжерный клапан с приводом и элементами управления с гидравлическим приводом может стоить 5000 долларов, в то время как шаровой или шаровой регулирующий клапан может стоить от 2 до 4 раз больше. Помимо стоимости покупки, следует также добавить затраты на изготовление фланцевых соединений, управляющую проводку к органам управления двигателем насоса и обеспечение бетонных оснований для более тяжелых шаровых и шаровых регулирующих клапанов.

    Конечно, стоимость установки клапана важна и представляет собой важное вложение.Но не менее важна стоимость перекачки, связанная с потерей напора через клапан. Электрический ток, потребляемый насосом, зависит от потери напора в системе и расхода. Дополнительные затраты на электроэнергию из-за потери напора клапана можно рассчитать по формуле:

    A = (1,65 Q ΔH Sg C U) / E

    где:

    A = годовая стоимость энергии, долларов в год

    Q = расход, галлонов в минуту

    ΔH = потеря напора, фут водяного столба

    Sg = удельный вес, безразмерный (вода 1.0)

    C = стоимость электроэнергии, $ / кВт · час

    U = использование, процент x 100 (1,0 равняется 24 часа в сутки)

    E = КПД насоса и двигателя (типичное значение 0,80)

    Например, разница в потерях напора между дроссельной заслонкой 12 дюймов (K = 0,43) и шаровым регулирующим клапаном (K = 5,7) в системе 4500 галлонов в минуту (12,7 футов / с) может быть рассчитана как следует:

    ΔH = K v2 / 2 г

    где:

    ΔH = потери напора, фут водяного столба

    K = коэффициент гидравлического сопротивления, безразмерный

    v = скорость, фут / с

    г = плотность, 32.2 фут / с2

    заменяющий:

    ΔH = (5,7 — 0,43) (12,7) 2/2 · 32,2

    = 13,2 футов туалета

    Эту разницу в потерях напора можно затем использовать для расчета разницы в годовых эксплуатационных расходах, предполагая, что затраты на электроэнергию составляют 0,05 доллара за киловатт-час и 50 процентов использования.

    A = (1,65 х 4500 х 13,2 х 1,0 х 0,05 х 0,5) / (0,8)

    = 3062 доллара США

    Расчет показывает, что использование 12-дюймовой дроссельной заслонки вместо 12-дюймовой проходной регулирующей заслонки может сэкономить 3062 доллара в год на энергозатратах.Если бы на насосной станции было четыре таких клапана, работающих в течение сорока лет, общая экономия составила бы около 490 000 долларов за весь срок службы станции. Понятно, что затраты на перекачку могут быть даже более важными, чем затраты на установку. Кроме того, чем больше размер клапана, тем больше влияние затрат энергии.

    Типичные коэффициенты потери напора показаны в таблице ниже в порядке уменьшения потерь напора. Шаровой кран AWWA имеет самые низкие потери напора среди всех регулирующих клапанов насоса, но дроссельный клапан AWWA, вероятно, обеспечивает лучший баланс между затратами на электроэнергию и затратами на установку.

    Тип размер порта клапана cv k регулирующий клапан globepattern 100 1800 570 бесшумный обратный клапан 100 2500 295 двухдисковый обратный клапан 80 4000 115 поворотный обратный клапан 100 4200 105 эксцентриковый плунжерный клапан 80 4750 81 обратный клапан swingflex 100 4800 80 обратный клапан с наклонным диском 140 5400 63 Дроссельный клапан 90 6550 43 Шаровой кран 100 21500 4

    Целостность седла регулирующего клапана насоса также важна для того, чтобы насос можно было обслуживать без обратного потока через клапан.Упругое седло клапана, которое сопрягается с устойчивой к коррозии посадочной поверхностью, отличается высокой надежностью, поскольку обеспечивает нулевую утечку. Если какая-либо утечка допустима, например, из-за неподходящих металлических седел, в местах утечки будет накапливаться мусор, и сопрягаемые поверхности могут подвергнуться эрозионному износу из-за обломков или утечки с высокой скоростью.

    Чтобы клапан был надежным, он должен быть построен и протестирован на соответствие промышленным стандартам, таким как AWWA C504, Butterfly Valves, опубликованным Американской ассоциацией водопроводных сооружений, чтобы гарантировать надежность конструкции, а также рабочие характеристики.Некоторые клапаны, такие как регулирующие клапаны с шаровой опорой, не подпадают под стандарт AWWA.

    Наконец, характеристики потока регулирующих клапанов насоса определяют, насколько хорошо они предотвращают скачки. Наиболее желательной характеристикой расхода клапана является такая, при которой клапан равномерно изменяет расход при установке в системе. Данные о расходе, предоставляемые производителями клапанов, представляют собой внутренние характеристики расхода, обычно выражаемые через коэффициент расхода (Cv) в различных положениях, как показано на рисунке 10.

    С левой стороны изображена кривая быстро открывающегося клапана (например, поворотного обратного клапана), которая отображает быстрое изменение расхода при открытии клапана. С другой стороны, это равнопроцентный клапан (например, шаровой клапан с V-образным отверстием), который изменяет скорость потока на равномерный процент. Наиболее желательной характеристикой потока для длинных трубопроводов является равный процент, обеспечиваемый дисковыми затворами и шаровыми кранами.

    Все обсуждаемые критерии выбора, включая стоимость, потери напора, надежность и характеристики потока, следует рассматривать вместе при выборе клапана.Ни один тип клапана не превзойдет всех категорий. Выгоды от ожидаемой производительности должны быть сопоставлены с затратами и влиянием на потенциал всплеска системы.

    Работа регулирующего клапана насоса

    Используя дроссельную заслонку, давайте рассмотрим работу типичного регулирующего клапана насоса. Дроссельная заслонка приводится в действие поворотом вала на 90 градусов и обычно оснащена гидроцилиндром. Цилиндр может питаться водой под давлением от магистрали или от независимой масляной энергосистемы.

    Ранее мы узнали, что отрицательные помпажи могут возникать в течение нескольких секунд, поэтому резервная водяная или масляная система является подходящей. Рисунок 11 иллюстрирует типичную установку. Гидравлическое управление, электрически подключенное к контуру насоса, установлено на клапане. Четырехходовые и двухходовые электромагнитные клапаны (SV) направляют рабочую среду к портам цилиндра для включения клапана. Скорость открытия и закрытия регулируется независимо регулируемыми клапанами управления потоком (FCV).Клапаны управления потоком представляют собой специальные игольчатые клапаны со встроенным обратным обратным клапаном, позволяющим свободный поток в цилиндр, но контролируемый поток из цилиндра.

    Когда насос запускается и давление растет, реле давления (PS), расположенное на коллекторе насоса, подает сигнал на открытие дроссельной заслонки. Во время останова клапан закрывается, а насос продолжает работать. Когда клапан приближается к закрытому положению, концевой выключатель (LS), расположенный на клапане, останавливает насос.

    Безопасное время работы регулирующего клапана насоса обычно намного больше критического периода. Для трубопроводов требуется длительное время работы, поскольку эффективное время закрытия клапана составляет часть его общего времени закрытия из-за того, что потеря давления клапана должна быть объединена с общей потерей давления в трубопроводе при регулировании расхода. Начальные полевые настройки обычно в три-пять раз превышают критический период, чтобы свести к минимуму помпаж.

    Следует рассмотреть одну дополнительную функцию регулирующего клапана насоса: предотвращение обратного вращения насоса после сбоя питания или отключения по перегрузке. Поскольку современные насосы больше не оснащены маховиками, как в старых дизельных агрегатах, они имеют низкую инерцию вращения и останавливаются всего за несколько секунд. Следовательно, после отключения электроэнергии или отключения насоса регулирующий клапан насоса должен закрываться быстрее, чтобы предотвратить обратное вращение.

    Гидравлическое управление клапана оснащено байпасной линией, оснащенной 2-ходовым электромагнитным клапаном (SV), чтобы направлять контролируемый поток цилиндра вокруг клапана регулирования нормального потока и через большой клапан регулирования потока (FCV), тем самым закрывая управление насосом. клапан автоматически через 5-10 секунд после сбоя питания.Это важно для предотвращения избыточного обратного вращения насоса и предотвращения истощения воды в гидропневматическом расширительном баке обратно через насос, если он используется.

    В качестве альтернативы специальному байпасному контуру иногда перед регулирующим клапаном насоса устанавливается быстрозакрывающийся обратный клапан для поддержки регулирующего клапана. Быстро закрывающийся обратный клапан не только предотвращает обратный поток через насос, но также обеспечивает избыточную защиту насоса, если регулирующий клапан насоса не может закрыться из-за потери давления или неисправности оборудования.

    Быстрое закрытие либо регулирующего клапана насоса, либо быстрозакрывающегося обратного клапана в системе длинных трубопроводов представляет собой дилемму. Ранее объяснялось, что регулирующий клапан должен закрываться в три-пять раз больше критического периода. С другой стороны, клапан должен закрываться через пять секунд, чтобы защитить насос после сбоя питания. Следовательно, в этих системах чрезмерные скачки напряжения будут возникать при отключении электроэнергии, поэтому обычно требуется дополнительная защита от перенапряжения.

    Оборудование для защиты от перенапряжений

    Поскольку непрактично использовать материалы труб, которые могут выдерживать высокие скачки давления или замедлять рабочую скорость потока до ползучей, необходимо оборудование для разгрузки от помпажа, чтобы предвидеть и рассеивать скачки от внезапных изменений скорости после отключения электроэнергии.Оборудование для сброса перенапряжения также обеспечит защиту от неисправных клапанов, неправильного наполнения или других проблем в системе.

    Напорные трубы и расширительные баки

    Многие типы оборудования для защиты от перенапряжения используются для защиты насосных систем. В системах низкого давления напорная труба, открытая в атмосферу, будет почти мгновенно сбрасывать давление за счет выпуска воды. Для систем с более высоким давлением высота стояка была бы непрактичной, поэтому баллонный аккумулятор или уравнительный бак с воздухом под давлением над водой можно использовать для поглощения ударов и предотвращения разделения колонн (см. Рисунок 12).

    Однако для типичных насосных систем эти резервуары имеют тенденцию быть большими и дорогими и должны поставляться с системой сжатого воздуха. При использовании также необходим дополнительный обратный клапан с быстрым закрытием, чтобы предотвратить утечку воды из расширительного бачка обратно через насос. Это типичный пример, когда вы видите, что установлены и регулирующий клапан насоса, и обратный клапан с быстрым закрытием.

    Кроме того, расширительный бачок создает чрезвычайно высокие показатели замедления (т.е.е. 25 футов / с2), поэтому для предотвращения захлопывания следует использовать быстрозакрывающиеся обратные клапаны или обратные клапаны, оборудованные расположенными снизу масляными заслонками.

    Предохранительные клапаны

    Клапаны сброса давления часто являются более практичным средством сброса давления. В этих клапанах скачок давления поднимает диск, позволяя клапану быстро сбрасывать воду в атмосферу или обратно во влажный колодец.

    Клапаны сброса перенапряжения имеют ограничение, заключающееся в том, что они не могут открываться достаточно быстро для рассеивания скачков в случаях, когда может произойти разделение колонки.В тех случаях, когда компьютерная модель переходных процессов предсказывает резкие или быстрые скачки давления, следует рассмотреть возможность использования предохранительных клапанов, оборудованных упреждающими устройствами. Регулирующий клапан с шаровой опорой, оснащенный элементами управления для защиты от перенапряжения и предотвращения перенапряжения, показан на рисунке 13. Клапан предупреждения перенапряжения быстро открывается при обнаружении события высокого или низкого давления.

    Когда насос внезапно останавливается, давление в коллекторе упадет ниже статического давления, что приведет к открытию клапана предотвращения перенапряжения.В этом случае клапан будет частично или полностью открыт, когда произойдет скачок давления в обратной магистрали. Клапаны антипакета обычно открываются менее чем за пять секунд, проходят высокие низкие скорости и повторно закрываются медленно со скоростью закрытия регулирующего клапана насоса (от 60 до 300 секунд). Подбор предохранительных клапанов имеет решающее значение и должен контролироваться специалистами по анализу переходных процессов.

    Комбинированные воздушные клапаны Anti-Slam

    Воздушные клапаны помогают уменьшить скачки давления в трубопроводах, предотвращая образование воздушных карманов в трубопроводах при нормальной работе.Воздушные карманы могут перемещаться по трубопроводу и вызывать внезапные изменения скорости и отрицательно влиять на работу оборудования, такого как устройства измерения расхода. Воздушные клапаны также предназначены для открытия и впуска воздуха в трубопровод, чтобы предотвратить образование вакуумного кармана, связанного с разделением колонны. Компьютерные программы анализа переходных процессов позволяют анализировать уменьшение помпажа при использовании воздушных клапанов различных размеров.

    Если ожидается разделение колонки в месте расположения воздушного клапана, воздушный клапан должен быть оборудован устройством предотвращения захлопывания, которое контролирует поток воды в воздушный клапан, чтобы предотвратить повреждение поплавка клапана (см. Рисунок 14).

    Устройство защиты от захлопывания позволяет воздуху беспрепятственно проходить через него во время цикла выпуска или повторного входа воздуха. Когда вода (из-за ее большей плотности) попадает в устройство, диск быстро закрывается и обеспечивает медленное закрытие поплавка воздушного клапана. Диск содержит отверстия, которые позволяют воде проходить через устройство защиты от захлопывания в закрытом состоянии, чтобы заполнить воздушный клапан примерно на 5 процентов от полной скорости заполнения, предотвращая резкое закрытие воздушного клапана.

    Клапаны вакуумного прерывателя

    Другой тип воздушного клапана, который используется в критических точках трубопровода, где может произойти разделение колонны, — это вакуумный прерыватель (VB), см. Рисунок 15. VB имеет компоненты, очень похожие на устройство предотвращения захлопывания, за исключением того, что диск VB удерживается закрытым с помощью пружину, в то время как тормозной диск остается открытым. Следовательно, вакуумный прерыватель не может удалить воздух; он пропускает воздух только для предотвращения образования вакуумного кармана. Это поддерживает избыточное давление в трубопроводе и снижает помпаж, связанный с разделением колонны.По сути, большая воздушная подушка попадает в трубопровод и задерживается в трубопроводе после отключения насоса. Затем в течение нескольких минут воздух медленно выпускается через примыкающий к нему выпускной воздушный клапан, имеющий небольшое (т.е. дюйма) отверстие. Опять же, программы анализа переходных процессов также предназначены для моделирования этого типа решения с воздушным клапаном.

    Список литературы

    1. Американская ассоциация водопроводных сооружений, Стальная водопроводная труба: руководство по проектированию и установке M11, «Гидравлический удар и скачок давления», 4-е изд.2004, с. 51-56.

    2. Боссерман Баярд Э. «Контроль гидравлических переходных процессов», Проект насосной станции, Баттерворт-Хайнеманн, 2-е изд., 1998 г. Санкс, Роберт Л., изд., Стр. 153-171.

    3. Хатчинсон, Дж. У., Справочник ISA по регулирующим клапанам, 2-е изд., Instrument Society of America, 1976, стр. 165-179.

    4. Kroon, Joseph R., et. др., «Причины и последствия гидроудара», журнал AWWA, ноябрь 1984 г., стр. 39-45.

    5.Val-Matic Valve & Mfg. Corp, 1993 «Критерии выбора обратного клапана» Обзор Waterworld, ноябрь / декабрь 1993 г., стр. 32-35.

    6. Рахмейер, Уильям, 1998. «Испытания обратного потока восьмидюймовых обратных клапанов Valmatic», Отчет лаборатории Университета штата Юта № USU-609, Отчет об испытании клапана Val-Matic № 117, Элмхерст, Иллинойс, [конфиденциально].

    7. Таллис, Дж. Пол, Гидравлика трубопроводов, Черновик 1984 г., Университет штата Юта, стр. 249-322.

    8.Valmatic Valve & Mfg. Corp., «Динамические характеристики обратных клапанов», 2003 г.

    Насосы и системы , май 2007 г.

    Расход, давление и производительность насоса

    Кривая производительности насоса суммирует возможности и требования данного насоса. Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность в доступном диапазоне расхода.

    Вас интересует Стормвотер?

    Получайте статьи, новости и видео о Stormwater прямо в свой почтовый ящик! Войти Сейчас.

    Ливневая вода

    + Получать оповещения

    Проектирование насосной станции — типичный муниципальный проект. Однако не следует путать простоту и простоту.

    Для насосных станций не существует единой оптимальной конструкции.Производительность насосов, тип станции, стратегия управления и множество других факторов способствуют изменению конструкции. Операторы и менеджеры должны знать особенности проектирования станций, чтобы обеспечивать руководство и надзор за проектировщиками.

    Насосные станции следует рассматривать как системы. Насосы могут быть наиболее важными элементами, но они не будут работать без электрических, структурных компонентов и компонентов HVAC. Чтобы насосная станция работала успешно, необходимо согласовать отношения между этими компонентами.

    Между насосными станциями питьевой, ливневой и сточной воды есть сходство, но есть и различия. В этой статье речь пойдет о перекачке сточных вод.

    Определение скорости потока

    Первой задачей проектирования является определение расхода, который должна обеспечивать насосная станция. Обычно это означает определение диапазона расходов, поскольку насосные станции должны учитывать значительные колебания спроса. Производительность обычно выражается в галлонах в минуту.

    Расчет обычно начинается со среднесуточного расхода. Это номинальный расход, который станция должна обеспечить в конце расчетного срока службы. Немногие насосные станции работают со среднесуточным расходом в течение длительного периода времени. Большинство станций рассчитаны на мощность, превышающую текущий ADF. Конструкция станции предназначена для удовлетворения растущих требований к мощности — часто на 20 лет вперед. В первые годы эксплуатации требуемый расход обязательно будет намного ниже — большинство насосных станций работают с одной третью проектного расхода.

    Суточные колебания расхода — это реальность при перекачивании воды и сточных вод. Пиковый расход в засушливую погоду обычно вдвое превышает среднесуточный расход. Колебания расхода на водонасосных станциях обычно меньше, чем на перекачке сточных или ливневых вод.

    Дождь и таяние снега, очевидно, определяют размер насосных станций ливневых вод, но они также являются важным фактором при перекачке сточных вод. Приток и инфильтрация обычно определяют максимальную производительность перекачки. Соотношение между средним суточным расходом и максимальной производительностью перекачки называется коэффициентом пика.Обычны четыре или пять факторов, а в общинах со старыми или комбинированными коллекторами используются коэффициенты до восьми.

    Изменение производительности или минимальный расход, который система может обеспечить в процентах от максимального расхода, может иметь решающее значение. Оценка расхода должна включать ADF, дневной минимум и максимум, а также максимальный часовой поток. Изменения могут быть компенсированы прерывистой работой насоса. Однако следует избегать насосов увеличенного размера, поскольку они приводят к чрезмерным циклам включения / выключения.Большие насосы более подвержены поломкам из-за частого запуска.

    Количество насосов

    Регулирующие органы требуют, чтобы насосная станция включала резервные (резервные) насосы. Это означает, что при выходе из строя самого большого насоса оставшиеся насосы должны иметь производительность, необходимую для пиковых почасовых расходов. Поскольку один насос обычно не может достичь необходимого диапазона изменения, в большинстве конструкций используется несколько небольших насосов вместо большого насоса и идентичного резервного. Стоимость нескольких насосов компенсируется, потому что каждый насос дешевле, чем большой.

    Небольшие насосные станции часто являются «дуплексными», с двумя насосами постоянной скорости. Каждый насос способен обрабатывать пиковый часовой расход.

    Напор

    Вторая характеристика для выбора насоса — это напор насоса или давление нагнетания. Термин «напор» происходит от высоты воды, которую насос может преодолеть при заданном расходе, обычно выражается в футах водяного столба (1 фут водяного столба = 0,43 фунта на квадратный дюйм = 6,3 бар). Операторы часто думают, что напор — это давление нагнетания в насосе, но многие аспекты напора влияют на производительность насоса (рис. 1).

    Разница в напоре от всасывания до нагнетания определяет производительность и мощность насоса. Это называется полным динамическим напором.

    HFS, д = трение потеря напора во всасывающих и напорных трубопроводах (ногах)
    HT = общий напор статического; разница в высоте воды на всасывающей и стороны насоса (ноги)

    Важно помнить, что насосы производят поток, но сопротивление системы потоку создает напор. Насос с выпускной трубой отсоединен будет производить много потока, но без давления.

    Два компонента TDH, которым уделяется наибольшее внимание при перекачивании, — это статический напор и напор трения на нагнетании. Статический напор — это высота воды на стороне нагнетания насоса за вычетом высоты воды на стороне всасывания насоса. Для большинства приложений статический напор почти постоянный.

    Напор трения возникает из-за сопротивления воде, движущейся по трубам и фитингам. Потери на трение возникают как на стороне всасывания, так и на стороне нагнетания насоса.Потери на трение изменяются в зависимости от квадрата скорости воды и размера трубы, обратной величине пятой степени.

    В некоторых приложениях, таких как головные части очистных сооружений, статический напор является самым большим компонентом TDH. В других случаях, таких как прокачка через длинную силовую магистраль, более важен напор трения. Относительные пропорции статического напора и фрикционного напора будут влиять на стратегию управления насосом и характеристики энергопотребления системы.

    Два обычно игнорируемых, но важных компонента напора на стороне всасывания насоса — это требуемый чистый положительный напор на всасывании и имеющийся чистый положительный напор на всасывании.Требуемый напор зависит от конструкции насоса. Это установлено испытаниями производителя и отображается на кривой насоса. Доступный и необходимый напор — это абсолютное давление относительно вакуума.

    В большинстве муниципальных насосных систем всасывающий патрубок затоплен. Это означает, что уровень воды в мокром колодце выше всасывающего патрубка насоса. Это одна из составляющих имеющейся головки. Другой — атмосферное давление. На уровне моря это составляет 14,7 фунтов на квадратный дюйм (14,7 фунтов на квадратный дюйм = 1,01 бар = 33.9 футов h3O). По мере увеличения высоты площадки атмосферное давление снижается.

    Давление пара — это давление, при котором вода закипает при данной температуре. Давление пара увеличивается по мере повышения температуры воды с соответствующим уменьшением доступного напора.

    pa = барометрическое давление (psia)
    Y = удельный вес воды, 62,4 фунта-силы / фут3
    hfs = потери на трение во всасывающем трубопроводе (футы)
    hts = высота воды выше (+) или ниже (-) всасывания насоса (футы)
    pv = давление водяного пара при температуре всасывания (psia)

    Эксплуатация насоса, когда доступный напор ниже требуемого, может привести к повреждению насоса.Всегда должен быть обеспечен запас прочности между рассчитанным доступным напором и требуемыми изготовителем значениями напора.

    Кривая производительности насоса

    Кривая производительности насоса суммирует возможности и требования данного насоса (Рисунок 2). Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность в доступном диапазоне расхода. Большинство кривых насоса показывают производительность при различных скоростях или диаметрах рабочего колеса.

    Кривая насоса не определяет фактическую рабочую точку насоса. Для этого необходимо построить кривую системы (TDH в зависимости от расхода) на кривой насоса. Их пересечение определяет фактический поток.

    Когда два насоса работают параллельно, поток не увеличивается вдвое. Статический напор остается постоянным. Однако напор трения увеличивается, что «толкает» рабочий поток ниже. Построение кривой системы с потерями на трение при удвоенном расходе позволяет определить новую рабочую точку.

    Заглядывая вперед

    Определение производительности и производительности насоса является первым и наиболее важным шагом при проектировании насосной станции. После определения требований к насосу можно продолжить процесс проектирования станции и ее вспомогательных компонентов. Они будут рассмотрены во второй и третьей частях этой серии.

    Усовершенствованный контроль давления и защита насосов с использованием частотно-регулируемых приводов

    В этом мире постоянно прогрессирующих технологий в отрасли перекачивания воды и сточных вод произошел взрывной рост использования высокотехнологичных частотно-регулируемых приводов, или ЧРП.

    Известные под многими универсальными названиями и производимые производителями по всему миру, эти технические чудеса открыли двери к безграничным возможностям в области управления насосными системами.

    Это расширение возможностей открыло множество методов, которые можно использовать для управления давлением нагнетания в насосной системе.

    В этой статье проанализируем основные методы управления давлением в системах водоснабжения и канализации, а также обсудим основные и передовые методы защиты насоса, двигателя и трубопроводов.Дополнительным преимуществом частотно-регулируемого привода является то, что оператор также может контролировать состояние системы и текущее потребление электроэнергии. Необнаруженная неэффективность может значительно увеличить счета за коммунальные услуги, которые при добавлении к множеству систем могут нанести ущерб бюджету на техническое обслуживание владельца или коммунальным предприятиям, управляющим многими системами.

    Регулирующее давление

    Общие компоненты для управления давлением в насосной системе включают:

    • Ручной переключатель давления
    • Редукционный клапан PRV
    • Датчик давления

    Реле давления с ручным управлением

    Этот метод был основой систем давления жидкости на протяжении многих лет.Он хорошо послужил промышленности и остается методом контроля давления для большого процента систем. Системы, использующие этот метод, будут испытывать увеличение и уменьшение давления от точки запуска до точки останова в зависимости от давления в их системе, или потребуется существенно увеличить напорный резервуар в системе, чтобы уменьшить перепад давления и при этом поддерживать минимальное время работы, требуемое для насосы.

    Редукционный клапан PRV

    В системах используются две категории PRV, в зависимости от местоположения и применения.Для муниципальных систем поступление воды в жилые дома или бизнес значительно выше, чем необходимо.

    Это сделано намеренно, чтобы учесть отклонения из-за высоты, колебаний спроса и требований к пожаротушению, которые обычно исходят от одной и той же муниципальной системы. PRV в этом случае устраняет или в основном устраняет колебания давления, просто останавливая выход избыточной воды за пределы PRV. С точки зрения энергопотребления это приемлемый метод, учитывая, что давление должно быть постоянным в одной системе во всем сообществе, где есть огромные различия в объеме и потребностях в давлении.

    Второй метод PRV, используемый для систем, обычно называется запорным клапаном цикла или CSV.

    Эти блоки предназначены для ограничения максимального давления в системе путем ограничения выхода через клапан на основе давления на выходной стороне, аналогично более распространенным PRV. CSV также делают еще две вещи. Когда насос включается в точке переключения низкого давления, клапан вызывает повышение давления до желаемой точки между низким и высоким, а затем уменьшает выходной объем, ограничивая его только количеством, необходимым для поддержания желаемой точки, при этом поддерживая минимальный расход для предотвращения повреждения насоса.Когда использование полностью отключается и достигается заданное давление, клапан направляет поток через байпас в напорный бак для восстановления резервной емкости. Этот метод поддерживает постоянное давление в течение некоторого времени, однако, позволяя насосу работать с максимальным напором и ограничивая поток до этой степени, значительно снижает эффективность работы насоса.

    Датчик давления

    Датчик давления действует просто как источник информации.Эта информация обычно предоставляется преобразователю частоты или ЧРП. ЧРП может использовать эту информацию для управления количеством энергии, передаваемой на двигатель / насос, и замедления или ускорения насоса для поддержания постоянного давления. Это достигается путем изменения частоты электрических импульсов с помощью так называемого инвертора. Это позволяет полностью контролировать вывод системы.

    В сочетании с недорогим ЧРП пользователь также может контролировать и впоследствии защищать систему от повреждений.

    Историческая проблема

    Системы водяного давления исторически включали в себя насос / двигатель с конденсаторным пускателем, управляемый простым реле давления, которое включало насос, когда давление в системе опускалось ниже заранее определенной «пусковой» точки, и выключало насос, когда тот же переключатель откроется снова. Разница между точками «пуска» и «останова», а также размер резервуара высокого давления, подключенного к системе, определяют время работы насоса.Для того, чтобы избежать чрезмерных «цикличности» из насоса, напорный бак просеивает, чтобы за минимальное время выполнения требуемого, основываясь на рекомендации производителя, чтобы обеспечить длительный срок службы насоса / комбинации двигателя и для поддержания гарантии.

    Проблемы возникают при изменении условий работы системы. Ниже перечислены переменные, которые при изменении влияют на способность системы поддерживать запланированные результаты.

    • Спрос на изменения системы
    • Резервуар подачи не может самовосстанавливаться с требуемой скоростью
    • Ломаная линия в системе
    • Насос / двигатель начинает выходить из строя
    • Посторонний предмет застрял в насосе

    Без метода обнаружения этих условий система продолжает работать; вызывая физическое повреждение насосного оборудования и потенциально вызывая значительные физические повреждения за пределами самой системы.Даже до появления заметных внешних повреждений в большинстве этих условий, если их не обнаружить вовремя, наблюдается существенное увеличение потребления электроэнергии.

    Решение

    Преобразователь частоты, двигатель и насос соответствующего размера, соединенный с датчиком давления, обеспечивают: постоянное давление в пределах диапазона откачки, максимальная энергоэффективность данной системы и уверенность в том, что привод контролирует систему, отключает ее для защиты ее, другого оборудования в системе и внешних физических повреждений в этой области.Давайте рассмотрим каждое из этих преимуществ более подробно.

    Постоянная производительность

    Общество ожидает, что, когда они включают кран, вода будет течь с одинаковой скоростью и давлением независимо от того, сколько людей используют систему одновременно. ЧРП лучше всего подходит для обеспечения этой «переменной» скорости и при этом поддерживает эффективно работающую систему. Не вдаваясь в технические подробности, привод делает это, воспроизводя синусоидальную волну переменного тока с переменной частотой.Это освобождает нас от ограничений, накладываемых электросетью, которая обычно выдает электричество со скоростью шестьдесят импульсов в секунду или 60 Гц. Исторически двигатели были разработаны для максимальной эффективности на этой скорости; однако новые электродвигатели, обмотки и изоляционный материал разработаны специально для использования этой возможности. Эти двигатели рассчитаны на «инверторный режим». Изменяя скорость подачи импульсов на двигатель, мощность насоса можно регулировать по-разному, не ограничивая поток и не снижая эффективность насоса.

    Максимальный КПД

    Получая постоянное давление за счет управления подачей электроэнергии на двигатель, а не ограничивая выход жидкости, частотно-регулируемые приводы могут повысить эффективность по сравнению с другими методами и снизить эксплуатационные расходы системы.

    Мониторинг, защита и уведомление

    Возможности мониторинга, обеспечиваемые современными ЧРП, ограничены только воображением проектировщика и способами, которыми система предназначена для использования и защиты от повреждений.Ниже рассматриваются наиболее часто используемые средства защиты в приложениях, работающих под давлением воды.

    Давление в системе

    Basic для водных систем, давление воды постоянно контролируется. Эта информация используется многими способами для определения состояния всей системы.

    Низкий / нулевой расход (также известный как сухой ход)

    При правильной установке системы будет установлена ​​нормальная рабочая скорость, которая определяет, насколько быстро двигатель должен работать для поддержания системы или «заданного давления».Если система не поддерживает требуемое давление в нормальном диапазоне скоростей, она предполагает, что воды недостаточно, и прекращает работу, чтобы защитить насос от «сухого хода»

    Нарушение уплотнения

    Для этой защиты требуется двигатель насоса, оснащенный датчиком, который может обнаруживать, когда уплотнение на двигателе вышло из строя и в двигатель попадает вода. Обычно используется в больших системах, он уведомляет пользователя о том, что для восстановления работоспособности системы требуется обслуживание.

    Защита двигателя от перегрузки

    Установив максимальную силу тока на основании паспортной таблички, двигатель не будет поврежден перегрузкой по току. Защита параллельных цепей по-прежнему обеспечивается выключателями, требуемыми местными правилами. Расширенные функции, доступные в большинстве современных приводов, позволяют приводу не только отключаться при перегрузке по току, но также сообщать с кодом ошибки при возникновении условия. Это очень полезно при диагностике первопричины сбоя; во время запуска, работы или замедления.

    Пониженное напряжение

    Предотвращается повреждение двигателя в случае обесточивания или другого пониженного напряжения на входной линии питания.

    Проблемы с трехфазным питанием

    В трехфазных системах ЧРП защищает привод и двигатель в случае неожиданного обрыва фазы во входящем источнике питания. Параметры также могут быть установлены для защиты от недопустимого фазового дисбаланса.Эти измерения производятся на входной стороне VFD и зависят от размера диска; Допускается большая погрешность, не влияя на выходную мощность привода на двигатель. На самом деле многие приводы используются именно для этой цели. При работе трехфазного двигателя, где трехфазное питание недоступно, приводы могут быть рассчитаны и настроены для преобразования однофазной входящей мощности в трехфазную выходную мощность (двигатель).

    Самозащита

    В дополнение к усовершенствованной защите насоса, двигателя и системы трубопроводов, современные частотно-регулируемые приводы имеют множество встроенных в привод средств защиты для защиты от повреждений, при условии, что он был правильно установлен и настроен в соответствии с другими компонентами системы.

    Уведомление о защите

    Все это является большим достижением в защите вашего насоса, двигателя и трубопроводов; однако ничего не делает, чтобы уведомить вас, если система выключена в результате одного из этих сбоев защиты. Если ваша система критически важна, вы можете рассмотреть возможность добавления модуля удаленного мониторинга или уведомления. Эти системы настолько просты или продвинуты, насколько это необходимо, чтобы соответствовать желаемому уровню уведомления. Полноценные системы «SCADA» (диспетчерский контроль и сбор данных) являются довольно продвинутыми, обычно используются в крупномасштабных системах и могут добавлять большие расходы к начальным и ежемесячным расходам на эксплуатацию системы.

    Для большинства систем орошения, перекачки скважин и повышения давления экономичная надстройка, которая предлагает уведомление по мобильному телефону при возникновении неисправностей, может добавить спокойствия, когда система находится в зоне, которую часто не проверяют, чтобы предотвратить физическое повреждение, если система выключена.

    Хороший дизайн не сокращается

    В то время как современные частотно-регулируемые приводы обеспечивают гораздо более высокий уровень мониторинга и защиты вашей системы, приводы не могут компенсировать неудачно выбранную комбинацию двигателя и насоса.Надежная конструкция системы и предварительные вложения — это хорошо потраченные деньги при установке системы водоснабжения с регулируемым давлением. Одна из наиболее распространенных проблем, связанных с системами частотно-регулируемого привода, — это требование к системе постоянного давления работать на плоской части кривой насоса. Если в соответствии с требованиями системы двигатель будет работать на верхних 15-20% доступной частоты, останется небольшой диапазон, позволяющий обеспечить переменный расход. Если ваша система удовлетворительно работает на частоте 60 Гц, но при этом отсутствует поток (мертвый напор) на частоте 50-55 Гц.ваша система подвержена проблемам в будущем. Это условие дает преобразователю частоты неоправданно плохую репутацию, когда реальная проблема заключается в конструкции самой насосной системы. Ничто не заменит наличие хорошей, хорошо продуманной установки от уважаемой компании, имеющей опыт работы с такими типами систем.

    Резюме

    Большое количество частотно-регулируемых приводов от различных производителей и постоянно развивающиеся технологии, встроенные в них, сами по себе являются доказательством того, что эта технология имеет смысл для повышения надежности и защиты, доступных для систем на этом рынке.Это также хорошо подходит для технологии «умных сетей» и возможностей подключения, необходимых для мониторинга и контроля использования энергии на протяжении всего жизненного цикла насосной системы. Использование частотно-регулируемых приводов на этом рынке в настоящее время вышло за пределы критической массы, и в будущем их использование на этом рынке будет продолжать расти.

    Проблемы насосной станции | WaterWorld

    Почему рабочие колеса изнашиваются и что с этим делать

    Менеджеры по распределению воды сосредоточены на том, чтобы максимально эффективно использовать оборудование своих насосных станций.Одним из конкретных источников внимания является предотвращение износа крыльчатки или «пережевывания» насосных станций. Жевание может привести к снижению эффективности перекачивания и увеличению затрат на обслуживание, оборудование и эксплуатацию.

    Хотя нормальный износ является обычным явлением, все насосные станции должны иметь план эксплуатации и технического обслуживания для оптимизации насосных операций. Традиционные планы операций и технического обслуживания содержат следующие элементы:

    • Регулярный осмотр на предмет утечек и необычных звуков

    • Смазка подшипников

    • Замена уплотнения

    • Замена упаковки

    • Замена рабочего колеса при стандартном использовании для оптимизации гидравлики по мере износа рабочего колеса со временем

    Однако даже самый хорошо продуманный план технического обслуживания может пойти не так, а другие факторы могут привести к более быстрому износу насоса, чем стандартный износ.

    Некоторые общие проблемы износа рабочего колеса насоса, наблюдаемые на насосных станциях, включают:

    • Абразивный износ, вызываемый твердыми частицами в воде. Этот тип износа обычно снижается в насосных станциях питьевой воды из-за более высокого уровня фильтрации, но иногда камни или другой мусор попадают в насос и вызывают проблемы. Этот мусор гораздо чаще встречается на насосных станциях сырой воды. В более редких случаях гравий попадает в готовую систему водоснабжения, что, скорее всего, связано со строительным проектом.

    • Химические реакции между раствором и материалом рабочего колеса, вызывающие коррозию, которая в конечном итоге разрушает рабочее колесо. Переменные в воде могут усугубить эти проблемы, например, конкретные химические вещества, используемые для обработки, кавитация и температура воды. Способ хлорирования воды операторами может повлиять на коррозионную активность воды на крыльчатку насоса. Например, гипохлорит натрия более агрессивен для оборудования систем водоснабжения, чем газообразный хлор, хотя он гораздо удобнее для операторов.

    • Кавитация возникает при низком давлении. Низкое давление может создавать пузырьки пара, которые схлопываются под воздействием более высокого давления. Свернувшийся пузырек пара посылает мощную ударную волну в рабочее колесо, вызывая износ и преждевременный износ. Иногда возникают нерешенные гидравлические проблемы, которые могут создать эту проблему.

    Некоторые из этих проблем требуют замены крыльчатки всего за два года. В некоторых случаях гидравлическая система насоса начинает ухудшаться при повышенных расходах и переключениях насоса, что может привести к проверке.Замена рабочего колеса является частью стандартного плана эксплуатации и технического обслуживания, но в этом сценарии частота замены намного превышала стандартное время замены.

    Выявление уменьшающейся гидравлики может быть сложным процессом и может быть вызвано различными проблемами. Наблюдение за системой диспетчерского управления и сбора данных (SCADA) или за потоками данных в реальном времени и давлениями является отличной отправной точкой. Анализ данных о расходе и давлении может выявить следующее:

    • Насос работает в крайнем левом углу своей характеристики насоса за пределами кривой минимального непрерывного стабильного потока.Операции ниже этой точки могут вызвать следующие проблемы в возрастающем порядке по мере того, как кривая насоса перемещается влево от кривой минимального непрерывного стабильного потока:

    • Эффективность откачки снижается

    • Потоки могут стать прерывистыми, что приведет к кавитации.

    и сокращение срока службы рабочего колеса

    • Потоки становятся все более прерывистыми и нестабильными, что приводит к:

    • Более шумные операции

    • Повышенная вибрация

    • Уменьшение срока службы подшипников и уплотнений из-за различных скоростей и давлений вокруг улитки корпуса.

    • Более частое возникновение кавитации, которая еще больше ухудшает рабочее колесо.

    • Температура начинает расти, вызывая:

    • Сильный износ рабочего колеса.

    • Повышенная вероятность химических реакций с рабочим колесом (зависит от химического состава воды и материала рабочего колеса насоса)

    • Насос работает в крайнем правом углу своей характеристики насоса за пределами максимально допустимого расхода.Действия за пределами этой точки вызывают следующее:

    • Пониженная эффективность откачки

    • Частое возникновение кавитации, что еще больше ухудшает рабочее колесо.

    • Переключение между насосами не плавное. Это может произойти, если нет задержки для запуска следующего насоса в очереди, или если задержка слишком длинная или короткая. Эта проблема часто встречается в сочетании с одной из ранее обсуждавшихся проблем, касающихся минимального непрерывного стабильного потока или максимально допустимого потока.

    • В системах с замкнутым контуром давление не поддерживается. Это также часто сочетается с проблемами минимального и максимального расхода.

    Химические реакции между обрабатывающими растворами и материалом рабочего колеса могут вызвать коррозию, которая, в конечном итоге, повредит рабочее колесо.

    Проблемы насосной станции с замкнутым контуром

    На насосных станциях с замкнутым контуром перекачка поддерживает давление в зоне, а не перекачивается в резервуары. Это может создавать интересные явления. Особенно это касается самого маленького насоса на станции.

    Во многих случаях рабочее колесо самого маленького насоса часто требует замены. После тщательного анализа на нескольких насосных станциях мы обнаружили, что:

    • Минимальные дневные потребности были слишком низкими в ночное время для адекватной циркуляции воды. Это вызывает кавитацию насосов. Во время минимальных дневных потребностей в некоторых зонах давления среднее значение в течение минимального дня составляло более 20 галлонов в минуту; однако в ночное время спрос был практически нулевым, только изредка использовался смыв унитаза или поздний душ.Как обсуждалось ранее, насос работает в крайнем левом углу кривой насоса в ночное время за пределами кривой минимального стабильного непрерывного потока. Это вызывает каскадный эффект снижения эффективности перекачивания, учащение кавитации и, в конечном итоге, повышение температуры. Более высокие температуры также увеличивают вероятность химических реакций. Эти проблемы усугубляются, когда насосные станции с замкнутым контуром «сбивают» воду из-за низкого спроса.

    • Кривые насоса не соответствовали гидравлике системы.График работы насоса ниже минимальной стабильной кривой непрерывного потока или выше максимально допустимого расхода. Это заставляет насосы работать за пределами своего диапазона максимальной эффективности и ускоряет износ рабочих колес.

    • Точка переключения между насосами была слишком длинной, из-за чего насосы работали сверх максимально допустимого расхода в течение длительного периода перед запуском следующего насоса в линии. При переходе к меньшему насосу это может привести к тому, что насос будет работать в течение длительного периода времени ниже минимальной стабильной кривой непрерывного потока.

    • Точка переключения между насосами была слишком короткой, что приводило к частым запускам / остановкам и нестабильным условиям потока.

    Рис. 1: График оптимизации кривой насоса.

    Продление срока службы рабочего колеса насосной станции с замкнутым контуром

    Попытки минимизировать проблемы ускоренного износа могут возникать как во время проектирования, так и во время эксплуатации насосной станции.

    На этапе проектирования:

    • Выберите подходящие насосы с соответствующими характеристиками насосов для соответствия гидравлике системы.

    • Оцените расчетные гидравлические условия при выборе материала рабочего колеса.

    • Оцените ночные потоки при минимальных дневных потребностях, чтобы определить, являются ли потоки слишком низкими для самого маленького насоса (не проектируйте нижний предел самого маленького насоса с учетом средних минимальных дневных требований).

    • Рассмотрите возможность добавления байпаса, который работает только при работе небольшого насоса, чтобы насос работал в точке с максимальной эффективностью.

    • Оцените химический состав воды, чтобы убедиться, что химическая реакция не происходит в зависимости от других факторов (например,г., кавитация / кипение воды).

    Чтобы продлить срок службы рабочего колеса, обслуживающий персонал может:

    • Модернизируйте рабочие колеса до никель-алюминиево-бронзовой, которая намного более устойчива к кавитации, чем стандартные рабочие колеса из чугуна.

    • Возьмите пробы воды, чтобы убедиться, что химическая реакция не происходит независимо от других факторов (например, кавитации / кипения воды). Замените крыльчатку на коррозионно-стойкий материал, например нержавеющую сталь.

    • Замените насос наименьшего размера, если имеется насос с лучшей гидравлической подгонкой.

    • Добавление байпаса от всасывания к заголовку разряда, который позволил бы достаточно потока, чтобы эффективно работать с небольшим насосом.

    • Нанять инженера для оценки вашей насосной станции.

    Принятие надлежащих мер по снижению и устранению преждевременного износа крыльчаток насоса позволит сэкономить деньги в будущем. Это также предотвратит дорогостоящую замену рабочих колес, решив проблему на любом этапе проектирования или эксплуатации. WW

    12VAC5-610-880.Прокачка.

    12VAC5-610-880. Прокачка.

    A. Силовая сеть.

    1. Скорость. При производительности насоса минимальная скорость самоочищения должна составлять два фута в секунду. Не следует превышать скорость восьми футов в секунду.

    2. Клапан сброса воздуха. Клапаны сброса воздуха должны быть размещены в высоких точках силовой магистрали, если это необходимо, для снятия воздушных пробок.

    3. Постельные принадлежности. Все силовые сети должны быть устроены так, чтобы обеспечивать равномерную опору по всей их длине.

    4. Защита от замерзания. Силовая сеть должна быть размещена на достаточной глубине, чтобы предотвратить замерзание.

    5. Расположение. Силовая магистраль не должна проходить ближе чем на 50 футов к источнику питьевой воды, если только давление не проверяется на месте на месте отключения насоса. Ни при каких обстоятельствах силовая магистраль не должна находиться ближе 10 футов от закрытого источника питьевой воды.

    6. Строительные материалы. Все трубы используются для силовых сети должны быть типа давления с суставами типа давления.

    7. Анкеры. Силовая сеть должна быть достаточно закреплена внутри насосной станции и по всей длине линии. Количество изгибов должно быть как можно меньше. Там, где требуется ограничение, должны быть предусмотрены упорные блоки, фиксированные соединения и / или стяжные тяги.

    8. Засыпка и трамбовка. Траншеи силовых магистралей должны быть засыпаны и утрамбованы как можно скорее после утверждения установки силовых магистралей. Материал для засыпки не должен содержать крупных камней и мусора.

    Б. Насосная станция и насосы.

    1. Калибровка. Влажные колодцы насосной станции должны обеспечивать хранение по крайней мере на четверть (1/4) дня выше уставки срабатывания сигнализации высокого уровня. Фактический объем между верхним и нижним пределами уровня определяется в каждом конкретном случае в зависимости от цели перекачивания: (i) при использовании дозирования при низком давлении см. Требования к размерам в 12VAC5-610-940 A; (ii) при перекачке в гравитационную распределительную коробку влажный колодец должен иметь размер, обеспечивающий рабочий объем между 1/4 суточного расхода и суточного расхода; (iii) при перекачивании с целью улучшения распределения потока (см. 12VAC5-610-930 A) рабочий объем влажной стенки должен быть равен 0.6 объема перколяционного трубопровода.

    2. Материалы. Материалы для строительства насосных станций такие же, как и для септиков (см. 12VAC5-610-810). Все материалы и оборудование, используемые на насосных станциях, не должны подвергаться коррозионному воздействию сточных вод.

    3. Доступ. Должен быть предусмотрен люк для доступа, заканчивающийся над поверхностью земли. Люк должен иметь минимальную ширину 24 дюйма и должен быть снабжен крышкой типа коробки для обуви, надежно закрепленной.

    4. Строительство. Насосные станции, построенные из сборного или залитого бетона, должны соответствовать строительным требованиям, содержащимся в 12VAC5-610-815 E. Когда сборные бетонные трубы используются для насосной станции, труба должна быть размещена и прикреплена к бетонной подушке как минимум шесть дюймов толщиной и шириной, по крайней мере, на один фут больше диаметра трубы. Все насосные станции должны быть водонепроницаемыми. Все водоводы, входящие в насосные станции или выходящие из них, должны быть снабжены водозащитой.Приточная труба должна входить в насосную станцию ​​на высоте, по крайней мере, на один дюйм выше максимального уровня воды в мокром колодце (общий полезный объем).

    5. Установка. Размещение насосных станций должно соответствовать требованиям к размещению септиков, содержащимся в 12VAC5-610-815 F.

    6. Насосы. Все используемые насосы должны быть центробежного типа с открытым забоем, предназначенные для перекачивания сточных вод. Насосы, используемые с единственной целью перекачки сточных вод на более высокую отметку, должны иметь производительность примерно 2.5-кратный среднесуточный расход в галлонах в минуту, но не менее пяти галлонов в минуту в головке системы. Насосы, используемые для улучшения распределения потока (см. 12VAC5-610-930 A), должны иметь минимальную производительность 36 галлонов в минуту при напоре системы на 1200 погонных футов перколяционного трубопровода. Насосы, нагнетаемые в систему распределения низкого давления, должны иметь размеры в соответствии с 12VAC5-610-940 A. Двойные переменные насосы требуются в системах 1800 погонных футов или более в соответствии с 12VAC5-610-930 B.Насосы должны быть размещены таким образом, чтобы при нормальных условиях запуска они подвергались положительному напору всасывания. При использовании нескольких насосов каждый насос должен иметь свою отдельную всасывающую линию. Подходящие запорные клапаны должны быть предусмотрены на линии нагнетания и линии всасывания (если он предусмотрен) для нормальной изоляции насоса. Обратный клапан должен быть размещен в напорном трубопроводе между насосом и запорным клапаном. Если нагнетание насоса находится на более низкой отметке, чем высокий уровень жидкости в насосной станции, на выпуске насоса должно быть предусмотрено антисифонное устройство.Насосы должны иметь трубопроводы таким образом, чтобы их можно было снимать для обслуживания, не осушая колодец.

    7. Органы управления. Каждая насосная станция должна быть оснащена средствами управления для автоматического запуска и остановки насосов в зависимости от уровня воды. Когда используются регуляторы поплавкового типа, они должны быть размещены таким образом, чтобы на них не влиял поток, поступающий в мокрый колодец. Должна быть предусмотрена автоматическая чередование насосов. Центр управления электродвигателем и главный выключатель должны быть размещены в безопасном месте над уровнем земли и вдали от насосной станции.Каждый центр управления двигателем должен быть снабжен переключателем ручного управления.

    8. Сигнализация. Должна быть предусмотрена сигнализация наводнения с дистанционным датчиком и электрическая схема, отдельная от схемы центра управления двигателем. Сигнал тревоги должен быть аудиовизуальным и подавать сигнал в месте, где его можно легко контролировать. При использовании нескольких насосов должна быть предусмотрена дополнительная аудиовизуальная сигнализация, чтобы предупредить, когда двигатель насоса не запускается по запросу.

    9. Вентиляция. На насосных станциях должна быть обеспечена принудительная вентиляция, когда персонал должен входить на станцию ​​для текущего обслуживания.

    а. Мокрые колодцы. Вентиляция может быть непрерывной или прерывистой. Вентиляция, если она постоянная, должна обеспечивать не менее 12 полных воздухообменов в час; в случае перебоев — не менее 30 полных воздухообменов в час. Такая вентиляция должна осуществляться механическими средствами.

    г. Просушите колодцы. Вентиляция может быть непрерывной или прерывистой. Вентиляция, если она постоянная, должна обеспечивать не менее шести полных замен воздуха в час; в случае перебоев — не менее 30 полных воздухообменов в час.Такая вентиляция должна осуществляться механическими средствами.

    Статутный орган

    §§ 32.1–12 и 32.1–164 Кодекса Вирджинии.

    Исторические заметки

    На основе VR355-34-02 § 4.23, эфф. 5 февраля 1986 г .; с поправками, эфф. 11 мая 1988 г .; Том 16, выпуск 16, эфф. 1 июля 2000 г.

    Адреса веб-сайтов, указанные в Административном кодексе штата Вирджиния для документов, включенных посредством ссылки, предназначены только для удобства читателя, не обязательно могут быть активными или актуальными, и на них не следует полагаться.Чтобы убедиться, что информация, включенная посредством ссылки, является точной, читателю рекомендуется использовать исходный документ, описанный в регламенте.

    В качестве услуги для общественности Административный кодекс Вирджинии предоставляется онлайн Генеральной Ассамблеей Вирджинии. Мы не можем отвечать на юридические вопросы или отвечать на запросы о юридических консультациях, в том числе о применении закона к конкретному факту. Чтобы понять и защитить свои законные права, вам следует проконсультироваться с юристом.

    Непрерывный контроль уровня для насосных станций

    В дополнение к различным типам датчиков предельного уровня для насосных станций все большую популярность приобретает более продвинутый подход.Многие предприятия и муниципалитеты используют датчики постоянного уровня. Некоторые популярные датчики для непрерывного измерения уровня — это погружные датчики давления, ультразвуковые и радарные датчики, а также датчики уровня.

    Переход на датчики уровня непрерывного действия — шаг к модернизации насосных станций. Современное оборудование, которое повышает эффективность и экономит деньги, намного лучше работает с датчиками уровня непрерывного действия, создавая ряд преимуществ.

    Сравним разницу между датчиками постоянного и предельного уровня:

    1) Один против многих

    Датчики предельного уровня измеряют предварительно заданные уровни, просто уведомляя оператора о достижении этого уровня.Обычно существует только один уровень, который может быть измерен одним датчиком, хотя серия поплавковых выключателей KA имеет до четырех уровней.

    С другой стороны, датчик постоянного уровня может измерять множество точек в пределах диапазона или диапазона датчика. Сколько очков в заданном диапазоне? Разрешение датчика обычно определяется как расстояние между двумя отдельными точками, которое датчик может измерить. Например, если датчик имеет разрешение ”, он может измерять с шагом”.

    2) Выходы и опции

    Датчики предельного уровня

    обычно имеют выходы, которые представляют собой электрические контакты, которые открываются или закрываются.Датчики постоянного уровня обеспечивают различные выходные сигналы, такие как выходы напряжения, тока или полевой шины. Общие выходы напряжения составляют 0-5 В постоянного тока, 0-10 В постоянного тока, а токовые выходы обычно 0-20 мА и 4-20 мА. Соединения полевой шины, такие как Hart, Modbus и другие, позволяют считывать датчики и иногда настраивать их с помощью ПК или какого-либо типа или контроллера процесса.

    При использовании аналоговых или непрерывных датчиков уровня почти всегда требуется контроллер. Эти контроллеры могут быть собственностью датчика или могут быть полностью настроены с помощью программного обеспечения.Фирменные контроллеры предварительно запрограммированы для работы в определенном процессе, например, дуплексное управление переменным насосом. Открытые контроллеры, такие как программируемые логические контроллеры или ПЛК, позволяют программистам адаптироваться к широкому спектру процессов. Дальнейшее обсуждение контроллеров выходит за рамки данной статьи и может быть обсуждено более подробно позже.

    Каковы основные преимущества датчиков уровня непрерывного действия?

    Экономия энергии, сокращение затрат на техническое обслуживание и рентабельность инвестиций

    Традиционно такие насосные системы, как насосы с опережающим / запаздывающим поплавком, включаются или выключаются на 100% при определенных уровнях резервуара.С датчиками непрерывного действия, а не циклическим включением и выключением насосов, уровень может поддерживаться путем управления скоростью насоса в зависимости от уровня.

    Этот подход широко используется в системах вентиляции зданий из-за экономии энергии и находит применение в насосной промышленности. Окупаемость инвестиций при переходе на насос с регулируемой скоростью и датчиком постоянного уровня часто может составлять всего за 1 год , в зависимости от области применения.

    Жесткие данные и лучшее планирование

    При использовании датчиков уровня непрерывного действия можно контролировать запасы.Просто зная размеры резервуара или колодца, можно рассчитать объем. Кроме того, измерение объема во временных интервалах позволяет оценить измерения расхода. Это дает несколько преимуществ, включая точную информацию об использовании, данные об эффективности насоса, планирование цикла обслуживания и другие.

    По сути, с датчиками постоянного уровня вы можете делать и знать больше. Для насосных станций основным применением является регулирование скорости насосов. Это одно из немногих приложений, в котором ROI хорошо изучен и может быть рассчитан на основе нескольких деталей.Мы продолжим эту статью, добавив несколько постов, объясняющих датчики непрерывного уровня, обычно используемые на подъемных станциях.

    Используете ли вы датчики предельного уровня или датчики постоянного уровня? Вы были в одном лагере, а перешли в другой? Если да, то почему? Расскажите нам, что думаете о том, почему одно лучше другого.

    Если у вас есть вопросы или вы хотите поговорить с инженером по применению, позвоните нам по телефону 888-753-7300 или заполните форму обратной связи.


    Изображения: вверху справа старая насосная станция.внизу слева — двухуровневая подъемная станция Romtec Utilities — используется с разрешения.

    Вертикальная турбинная водяная насосная станция

    Вертикальные турбинные насосные системы

    Watertronics спроектированы и изготовлены специально для каждого клиента и могут удовлетворить практически любые требования к расходу и давлению.

    Характеристики вертикальной турбинной системы

    :

    • Программируемые логические элементы управления, которые включают уникальные алгоритмы для оптимизации регулирования давления и характеристик давления насоса для уменьшения скачков давления.
    • Частотно-регулируемые приводы

    • обеспечивают практически идеальное регулирование давления и включают в себя защиту от сквозного прохода для поддержания работоспособности систем после потери питания или аварийного сигнала.
    • VirtualVision ™ — это наш простой в использовании интерфейс оператора с сенсорным экраном и ЖК-дисплеем с активной матрицей TFT для мониторинга сигналов тревоги, изменения последовательности работы насосов, регулировки давления на выходе, изменения продолжительности промывки фильтра, записи или сброса расхода воды, калибровки и многого другого.
    • Технология удаленного мониторинга

    • Watervision® предлагает удобное программное обеспечение для доступа к вашей насосной станции издалека.
    • Pump-Link® обеспечивает интеграцию в реальном времени между центральным компьютером ирригационной системы и насосной станцией.
    • Регуляторы уровня в резервуаре обеспечивают повторяемость с точностью до долей дюйма.
    • Модульная конструкция салазок представляет собой сплошной защищенный от ржавчины лист из предварительно перфорированной стали, без сварных швов, которые являются ненужными слабыми местами.
    • Антикоррозийные покрытия наносятся индивидуально в процессе, который включает подготовку металла, антикоррозийное покрытие, запеченную эпоксидную грунтовку и двухкомпонентное покрытие из запеченного полиуретана, нечувствительного к ультрафиолету.
    • Инверторные энергоэффективные двигатели VHS.
    • Напорная головка из высокопрочного чугуна с шаровидным графитом, обеспечивающая предел прочности при растяжении 65 000 фунтов на квадратный дюйм с радиальным нагнетательным потоком для повышения эффективности и коррозионной стойкости, а также уникальная двухпортовая система выпуска воздуха для полной продувки воздуха.
    • Чаша из чугуна, облицованная фарфором. Высокоэффективные рабочие колеса из нержавеющей стали с оптимизированной конструкцией и гладкой поверхностью без трения.
    • Фильтры, устойчивые к ржавчине и коррозии, с датчиками давления на входе и выходе для превосходной промывки.
    • Клапан промывки фильтра, в котором вместо гидравлического мембранного клапана используется устойчивый к грязной воде электрический дисковый затвор.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    *

    *