Расчет диаметра труб для отопления частного дома: Диаметр полипропиленовых труб для систем отопления

Содержание

Диаметр труб системы отопления: расчет, формула, подбор

Необходимые данные для расчета

Основная задача отопительных труб – доставить тепло к нагреваемым элементам (радиаторам) с минимальными потерями. От этого и будем отталкиваться при выборе правильного диаметра трубы для отопления дома. А вот чтобы рассчитать всё верно, нужно знать:

  • длину трубы;
  • потери тепла в здании;
  • мощность элементов;
  • какая будет разводка труб (естественная, принудительная, однотрубная или двухтрубная циркуляция).

Следующим пунктом после того, как у Вас на руках будут все вышеперечисленные данные, необходимо будет набросать общую схему: как, что и где будет расположено, какую тепловую нагрузку будет нести каждый отопительный элемент. Затем можно будет начинать высчитывать нужное сечение диаметра трубы для отопления дома.
Также следует быть внимательным при покупке:

  • металлопластиковые и трубы из стали маркируются по размеру внутреннего диаметра, тут проблем нет;
  • а вот полипропиленовые и медные – по внешнему диаметру. Следовательно, нам нужно либо измерять внутренний диаметр самостоятельно с помощью штангенциркуля, либо – от внешнего диаметра трубы для отопления дома отнять толщину стенок.

Не забывайте об этом, потому как нам нужен именно «внутренний диаметр трубы для отопления дома» чтобы всё рассчитать верно.

Выбираем диаметр для Вашего отопления

Не рассчитывайте на то, что вы сразу сможете правильно подобрать нужный Вам диаметр трубы для отопления дома. Дело в том, что получить желаемую эффективность можно разными путями.

Теперь более подробно. Что самое важно в правильной системе отопления? Самое важное – это равномерный нагрев и доставка жидкости во все нагревательные элементы (радиаторы). В нашем случае этот процесс постоянно поддерживает насос, благодаря которому за конкретный временной промежуток, жидкость движется по системе. Следовательно, выбирать мы можем только из двух вариантов:

  • купить трубы большого сечения и, как следствие, небольшая скорость подачи теплоносителя;
  • либо трубу маленького сечения, естественно давление и скорость движения жидкости при этом возрастёт.

Логически конечно лучше выбрать второй вариант диаметра труб для отопления дома, и вот по каким причинам:

  • при наружной прокладке труб, они будут менее заметны;
  • при внутренней прокладке (например, в стене или под полом), канавки в бетоне будут более аккуратные, и долбить их проще;
  • чем меньше диаметр изделия – тем оно, естественно, дешевле, что тоже немаловажно;
  • при меньшем сечении трубы общий объём теплоносителя также уменьшается, благодаря чему мы экономим топливо (электроэнергию) и снижаем инерционность всей системы.

Да и работать с тонкой трубой намного легче и проще, чем с толстой.

Формула расчета диаметра трубы для отопления дома

Для примера подберём сечение для трубы из меди в прямой зависимости от того насколько мощные радиаторы.

Все трубы изготавливаются по ГОСТу. Следовательно, заранее известны все диаметры, а также объем полезного тепла, которое они могут пропустить через себя в зависимости от сечения и давления. Поэтому

Расчет диаметра трубы для отопления

Выбираем диаметр труб для отопления: схема расчета, характеристики в зависимости от материала изготовления

Правильное проектирование отопительной системы заключается в учете всех возможных факторов влияния на ее эффективность КПД. Помимо корректного подбора основных компонентов, котла, радиаторов, групп безопасности, следует правильно рассчитать сечение магистралей. Для этого нужно знать оптимальный диаметр труб отопления: как правильно выбрать и рассчитать его самостоятельно?

Трудности выбора диаметра труб отопления

Казалось бы — выбор диаметра труб для отопления частного дома не является сложной задачей. Они должны лишь обеспечить доставку теплоносителя от источника его нагрева к приборам теплоснабжения – радиаторам батареям.

Но на практике неправильно подобранный диаметр коллектора отопления или подающей трубы может привести к значительному ухудшению работы всей системы. Это объясняется процессами, которые происходят во время движения воды по магистралям. Для этого нужно знать основы физики и гидродинамики. Чтобы не вдаваться в дебри точных расчетов, можно определить основные характеристики отопления, которые напрямую зависят от сечения трубопроводов:

  • Скорость движения теплоносителя. Она влияет не только на повышение шума при работе теплоснабжения, но и нужна для оптимального распределения тепла по приборам отопления. Попросту вода не должна успеть остыть до минимального уровня при достижении последнего радиатора в системе;
  • Объем теплоносителя. Так, диаметр труб с естественной циркуляцией отопления должен быть большим, чтобы снизить потери при трении жидкости о внутреннюю поверхность магистрали. Однако наряду с этим увеличивается объем теплоносителя, что влечет за собой повышение затрат на его нагрев;
  • Гидравлические потери. Если в системе будут применены разные диаметры пластиковых труб для отопления, то неизбежно возникнет разность давления на их стыке, что приведет к возрастанию гидравлических потерь.

Как выбрать диаметр трубы для отопления, чтобы по факту установки не пришлось переделывать всю систему теплоснабжения из-за крайне низкой эффективности? Прежде всего, следует выполнить правильный расчет сечения магистралей. Для этого рекомендуется воспользоваться специальными программами и при желании проверить результат самостоятельно вручную.

В месте состыковки диаметры полипропиленовых труб для отопления уменьшаются из-за наплава. Снижение сечения зависит от степени нагрева при пайке и соблюдения технологии монтажа.

Порядок расчета сечения магистралей теплоснабжения

Перед тем как рассчитать диаметр трубы отопления необходимо определиться с их основными геометрическими параметрами. Для этого нужно знать основные характеристики магистралей. К ним относятся не только эксплуатационные качества, но и размеры.

Каждый производитель указывает значение сечения труб – диаметр. Но фактически он зависит от толщины стенки и материала изготовления. Перед приобретением определенной модели трубопроводов нужно знать следующие особенности обозначения геометрических р

Расчет диаметра трубы для отопления

Чтобы избежать лишних расходов энергии и потерь тепла при обустройстве отопительной системы нужно правильно провести расчет диаметра трубы для отопления. Этот размер определяет габариты трубы и он обязательно учитывается при дизайне помещения.

Как проводится расчет диаметра отопительных труб?

Выбор диаметра труб для отопления проводится по различным схемам и формулам, которые можно найти в Интернете и с учетом различных факторов, таких как состав и качество теплоносителя, давление в разводящих трубах и многое другое. Нужно знать следующие параметры труб:

  • диаметр внутренний фасонных деталей и фитинга;
  • номинальная величина внутреннего диаметра;
  • толщина стенки трубы.

Можно в домашних условиях диаметр измерять рулеткой или обычной линейкой. Перевести полученную величину в дюймы довольно просто: руководствуйтесь тем, что один дюйм – это 25,4 мм. При расчете диаметра отталкивайтесь оттого, что при высоте потолков в помещении в 2,5 м (стандартная высота) на один метр квадратный помещения потребляется до 100 ватт мощности теплогенератора.

Все формулы и цифры запомнить трудно и именно поэтому лучше воспользоваться расчетной таблицей из Интернета, где четко указаны все характеристики отопительных приборов, используемая схема разводки труб и другие нужные параметры.

Таблика расхода и скорости движения теплоносителя, потери давления в ПЭ и стальных трубах разных диаметров.

Сечение отопительных труб

Расчет сечения трубы отопления проводится на этапе проектирования всей отопительной системы. При выборе труб нужно обязательно учитывать их длину и размер полезного сечения. Правильно выбранное сечение труб влияет на их работу, в общем. Оптимальный размер сечения для отопительных труб в загородном доме или в квартире — от 30 до 40 мм. Очень часто не опытные в этом вопросе люди выбирают трубы с сечением, который раза в два больше нормы, они считают, что так будет свободно проходить циркуляция воды.

Но сильное увеличение сечения труб очень часто приводит к тому, что давление в отопительной системе будет снижено, и радиаторы просто в квартире не будут греть.

Благодаря данной таблице, можно определить оптимальный диаметр труб для двухтрубного отопления.

На что обращать внимание при выборе диаметра?

  1. Используемый вид подачи теплоносителя. Если планируете подключить частный дом к тепловой общегородской магистрали, то диаметр труб будет неизменным, то есть, от 30 до 40 мм. Если же у вас в доме будет свой котел, то все зависит от ваших представлений о системах отопления и советах специалистов.
  2. Выбранная схема и вид отопительных труб. При естественной отопительной системе одноэтажного частного дома диаметр труб часто бывает больше, ведь чем толще труба – тем меньше сопротивление. К системам с циркуляцией принудительной такое правило не подойдет, и при установке в систему циркуляционного насоса размер трубы будет отличаться.
  3. Материал труб. Производя подбор диаметра для труб, вы должны знать, что для труб из разных материалов используются разные системы измерений. К примеру, все стальные и чугунные трубы для отопления маркируются по сечению внутреннему. А вот пластиковые и медные отопительные трубы маркируются по диаметру наружному. Такую особенность нужно учесть, если в сборке отопительной системы будет применяться комбинация труб из разных материалов.

Видео: «Расчет диаметра труб отопления по скорости»

видео-инструкция как рассчитать своими руками, особенности трубопроводов, цена, фото





Как выполняется расчет диаметров трубопроводов отопления при известной мощности котла? Как подсчитать минимальный диаметр для отдельного участка контура? В этой статье нам предстоит познакомиться с формулами, используемыми при вычислениях, и сопроводить знакомство примерами расчетов.

Мы научимся вычислять внутренний диаметр трубы. Стоит помнить, что обычно они маркируются внешним.

Зачем это нужно

А в самом деле – для чего необходим расчет диаметров труб отопления? Почему просто-напросто не взять трубы заведомо избыточного размера? Ведь тем самым мы обезопасим себя от чрезмерно медленной циркуляции в контуре.

Увы, у такого подхода есть несколько серьезных недостатков.

  • Материалоемкость и, соответственно, цена погонного метра растет пропорционально квадрату диаметра. Расходы будут далеко не копеечными.

Заметьте: для сохранения того же рабочего давления при увеличении диаметра трубы приходится увеличивать толщину стенок, что дополнительно увеличивает материалоемкость.

  • Что не менее важно, увеличившийся диаметр трубопровода означает увеличение объем теплоносителя и, соответственно, выросшую тепловую инерционность системы. Она будет дольше прогреваться и дольше остывать, что не всегда желательно.
  • Наконец, при открытой прокладке толстых труб отопления они не очень-то украсят помещение, а при скрытой – увеличат глубину штроб в стенах или толщину стяжки на полу.

Спрятать в штробы толстые трубы заметно сложнее.

Формулы

Поскольку мы с вами, уважаемый читатель, не посягаем на получение диплома инженера-теплотехника, не станем лезть в дебри.

Упрощенный расчет диаметра трубопровода отопления выполняется по формуле D=354*(0,86*Q/Dt)/v, в которой:

  • D – искомое значение диаметра в сантиметрах.
  • Q – тепловая нагрузка на соответствующий участок контура.
  • Dt – дельта температур между подающим и обратным трубопроводами. В типичной автономной системе она равна примерно 20 градусам.
  • v – скорость потока теплоносителя в трубах.

Похоже, для продолжения нам не хватает кое-каких данных.

Чтобы выполнить расчет диаметра труб для отопления, нам нужно:

  1. Выяснить, с какой максимальной скоростью может двигаться теплоноситель.
  2. Научиться рассчитывать тепловую мощность всей системы и ее отдельных участков.

Скорость теплоносителя

Она должна соответствовать паре граничных условий.

С одной стороны, теплоноситель должен оборачиваться в контуре примерно три раза за час. В противном случае заветная дельта температур заметно увеличится, сделав нагрев радиаторов неравномерным. Кроме того, в сильные холода мы получим вполне реальную возможность разморозки наиболее холодных участков контура.

Медленная циркуляция привела к разморозке радиатора.

С другой стороны, избыточно большая скорость породит гидравлические шумы. Засыпать под гул воды в трубах – удовольствие, скажем так, на любителя.

Допустимым считается диапазон скоростей потока от 0,6 до 1,5 метров в секунду; при этом в расчетах обычно используется максимально допустимое значение – 1,5 м/с.

Тепловая мощность

Вот схема ее расчета для нормированного теплового сопротивления стен (для центра страны – 3,2 м2*С/Вт).

  • Для частного дома за базовую мощность берутся 60 ватт на кубометр помещения.
  • К ним добавляется 100 ватт на каждое окно и 200 – на каждую дверь.
  • Результат умножается на региональный коэффициент, зависящий от климатической зоны:
Средняя температура январяКоэффициент
-402,0
-251,6
-151,4
-51
00,8

Средняя температура января на карте страны.

Так, помещение объемом 300 м2 с тремя окнами и дверью в Краснодаре (средняя температура января – +0,6С) потребует (300*60+(3*100+200))*0,8=14800 ватт тепла.

Для зданий, тепловое сопротивление стен которых значительно отличается от нормированного, используется еще одна упрощенная схема: Q=V*Dt*K/860, где:

  • Q – потребность в тепловой мощности в киловаттах.
  • V – объем отапливаемого помещения в кубометрах.
  • Dt – разница температур между помещением и улицей в пик холодов.

Полезно: температуру в помещении лучше брать соответствующей санитарным нормам, уличную – среднему минимуму за последние несколько лет.

  • К – коэффициент утепления здания. Откуда брать его значения? Инструкция отыщется в очередной таблице.
Коэффициент утепленияОписание ограждающих конструкций
0,6 – 0,9Пенопластовая или минераловатная шуба, утепленная кровля, энергосберегающие тройные стеклопакеты
1,-1,9Кладка в полтора кирпича, однокамерные стеклопакеты
2 – 2,9Кладка в кирпич, окна в деревянных рамах без утепления
3-4Кладка в полкирпича, остекление в одну нитку

Откуда брать нагрузку для отдельного участка контура? Она рассчитывается по объему помещения, которое отапливается этим участком, одним из приведенных выше способов.

Пример расчета

Итак, в теории мы знаем, как рассчитать диаметр трубы отопления.

Давайте подтвердим теоретические знания практикой и своими руками выполним расчет для следующих условий:

  • Нам необходимо вычислить диаметр розлива в частном доме площадью 100 квадратных метров.
  • Высота потолка в доме – 2,8 метра.
  • Стены представляют собой кадку газобетонными блоками марки D600 толщиной 40 см с наружной пенопластовой шубой толщиной 150 мм.

Пенопластовая шуба сведет потери тепла к минимуму.

  • Дом расположен в Комсомольске-на-Амуре Хабаровского края (средний минимум температуры января – -30,8 С). Внутреннюю температуру примем равной +20 С.

Вначале вычислим потребность в тепловой мощности.

Утепление явно обеспечит тепловое сопротивление лучше нормированного, что заставит нас обратиться к второй из приведенных схем расчета.

  1. Внутренний объем дома равен 100*2,8=280 м3.
  2. Дельта температур между улицей и домом в худшем для нас случае будет равна 50 градусам.
  3. Коэффициент утепления примем равным 0,7.
  4. Расчетная мощность бытового отопительного котла должна быть не менее 280*50*0,7/860=11,4 КВт.


Осталось выполнить собственно расчет диаметра трубы для отопления. Он будет равным 354*(0.86*11,4/50)/1,5=2,4 см, что соответствует стальной ВГП трубе ДУ 25 или полипропиленовой трубе с внешним диаметром 32 мм.

На фото – полипропиленовый отопительный розлив.

Заключение

Позволим себе напомнить, что нами приведены предельно упрощенные схемы расчетов. Как всегда, дополнительную тематическую информацию читатель сможет обнаружить в прикрепленном к статье видео. Успехов!

Расчёт диаметра труб для отопления

Трубы являются одними из самых распространённых, разнообразных и необходимых изделий. Их назначения и сферы использования так многочисленны, что и перечислить сложно. Трубопроводы для выполнения самых разных задач изготавливают из металла, стекла, пластика, керамики. Размеры варьируются, могут быть от миллиметра и до огромных труб для транспортировки нефти и газа.

В данной статье разберём, как рассчитать диаметр труб для отопления. Не стоит недооценивать важность расчёта, потому что неточности в выборе трубного диаметра могут существенно ухудшить гидродинамику отопительного контура, снизить коэффициент полезного действия и стать причиной слишком высоких затрат на приобретение труб забольшого диаметра.

Ключевые параметры труб:

  • усреднённый диаметр;
  • внешний диаметр трубы;
  • внутренний трубный диаметр;
  • материал трубопровода.

Советы перед расчётом и установкой системы

Узнать необходимый диаметр трубопровода под отопление очень важно, так как именно от этого параметра зависит гидродинамическое сопротивление и пропускная способность контура. Ещё перед расчётом требуется чётко определиться с типом труб и их материалом.

Нанесённая маркировка для изделий различается. Трубы из пластика маркируют с указанием наружного диаметра, а из чугуна и стали – по внутреннему диаметру. Взять на заметку этот факт придётся, если установка трубопровода будет осуществляться комбинированным способом.

Перед самой работой также необходимо составить схему планируемой системы отопления, выбрать диаметр труб для отопления в частном доме и купить все материалы. К тому же найти комплектующие, в том числе тройники, клапаны, переходники и воздушные клапаны.

Подробнее о переходниках и фитингах можно прочитать в этой статье

Расчёт диаметра трубы для отопления должен производиться аккуратно и внимательно, в какой последовательности всё рассчитывать рассмотрим ниже.

Что нужно для расчёта

Как правило, вычисления начинают с определения тепловой мощности – Q. Необходимое количество тепла узнают произведением объёма помещения V в м³ на норму, которая равна 40 Вт/м³.

Q = V х 40 Вт/м³

Затем устанавливают тип системы отопления: одно- или двухтрубная. Для загородных домов лучше подойдёт 2-трубная, однако для будущего расчёта выбор типа системы – не самое важное.

Лучше направить своё внимание на выбор метода движения теплового носителя:

  • будет ли он конвекционным либо естественным;
  • либо же принудительным, с использованием насоса циркуляции.

Главное отличие этих методов в том, что при организации системы выбирается уклон отопительных труб при естественной циркуляции, где жидкость движется самотёком, а второй вариант подразумевает движение с помощью насоса, что делает скорость обмена тепла намного выше.

Скорость движения теплового носителя – очень важный показатель.

В зависимости от него, в том числе, выбирают диаметр труб для обогрева. Расчётные единицы для естественной циркуляции – от 0,3 м/с. Скорость движения теплоносителя зависит от напора, поэтому при выборе варианта с естественной циркуляцией он определяется высотой подъёма расширительного бачка открытого типа. Каждый метр подъёма добавляет величину давления в 0,1 атм.

Рассчитать объем расширительного бака можно тут

В случае с циркуляцией при помощи насоса выбирают величину скорости – 0,7 м/с. Высчитывая скорость необходимо идти на определённые уступки, ведь при высокой скорости появляется шум в системе и существенно повышается гидравлическое сопротивление, а при очень низкой — забольшие размеры отопительных изделий приведут к увеличению финансовых затрат. Потому зачастую выбирают меньший диаметр в связи с:

  • облегчённым монтажом;
  • относительно низкой стоимостью труб диаметра поменьше;
  • увеличением динамичности системы при меньшем количестве жидкости.

Расчёт по этапам

Вы определили исходные данные: нарисовали схему отопительной системы, решили с типом, вовремя рассчитали величину тепловой мощности для всех помещений? Тогда действуйте дальше. Обычно расчёт начинают с наиболее удалённого помещения.

Объёмный расход жидкости вычисляют по формуле:

G = 0.86*Q / 20
где:
G – объёмный расход теплоносителя, кг/ч;
Q – расчётное количество тепла, Вт;
20 – температурная разница в подаче и «обратке». Для расчётов равна 20 °C.

По приведённой формуле определяют массу жидкости, однако горячая вода характеризуется при 80 °C плотностью р = 971.6 кг/м³. Потому объёмный расход Vo вычисляют формуле:

Vo = G / р

При знании объёма и скорости движения нетрудно вычислить площадь поперечного сечения:

S = Vo / (3600 х Vт)
где:
S – площадь поперечного сечения;
Vo – расход (объёмный) теплового носителя;
Vт – выбранная скорость потока жидкости.

И в конце производят расчёт диаметра:

D = корень квадратный из выражения 4S /3,14.

После того, как вы вычислили диаметр для дальней комнаты, рассчитать размер трубопровода для следующего помещения не составит труда. Однако стоит помнить, что через это помещение необходимо пропустить суммарное количество тепла для двух комнат и т.п. Расчёт в целом не трудный, но для тех, кто не занимался ранее подобными вычислениями, достаточно громоздок.

Потому для того, чтобы облегчить сам процесс, существуют таблицы, дающие ответ и решающие задачу – как определить диаметр трубы для отопления. Из таблиц чётко ясно: диаметр отопительных труб с естественной циркуляцией нужен большой, так как скорость движения потока 0,3 м/с. Выбирать трубы стоит по ближайшему большему диаметру, взяв на заметку несовпадение логики маркировки труб из разных материалов:

  1. Водогазопроводные трубы из стали – прописан внутренний диаметр.
  2. Электросварные изделия из стали – наружный диаметр.
  3. Полиэтиленовые, металлопластиковые, из полиэтилена низкого давления, полипропиленовые трубы для отопления – диаметр наружный.

Диаметры медных и стальных труб для отопления:

Таблица диаметров труб

Каким диаметром должны быть трубы отопления полипропилен

Вы решили использовать изделия из полипропилена и не знаете, как подобрать диаметр в связи с вышеприведёнными формулами? Аналогично. Однако у труб из полипропилена большой срок службы, около века, потому система отопления, которая правильно рассчитана и качественно установлена, будет служить довольно долго. Загляните в таблицу диаметров труб для отопления.

Наружный диаметр, ммPN10PN20PN30
Внутренний диаметрТолщина стенкиВнутренний диаметрТолщина стенкиВнутренний диаметрТолщина стенки
16  10.62.7  
2016.21.913.23.413.23.4
2520.42.316.64.216.64.2
3226.03.021.25.421.23.0
4032.63.726.66.726.63.7
5040.84.633.28.433.24.6
6351.45.84210.5425.8
7561.26.95012.5506.9
9073.68.2615  
110901073.218.4  

Полипропиленовые трубопроводы пользуются популярностью, так как они стоят не так дорог

Как подобрать диаметры труб для системы отопления частного дома

Главная

Как подобрать диаметры труб для системы отопления частного дома

Система отопления подобна сети разветвленных дорог.

Чтобы облегчить восприятие информации, давайте представим себе систему отопления в виде сети разветвленных дорог, по которым грузовые автомобили развозят кирпичи с завода на строительные площадки.

У нас будет один завод, десять строительных площадок, десять автомобилей и одна основная дорога, идущая от кирпичного завода, которая затем разделяется на два главных равнозначных направления.

Условимся, что в каждый автомобиль вмещается по 3 000 кирпичей и, в целом, расход кирпичей на всех строительных площадках в течении часа составляет 30 000 кирпичей по 3 000 штук на каждой.

Кроме того, машины должны двигаться одновременно с одинаковой скоростью.

Какой ширины нам нужны дороги? Сколько полос будет иметь каждое дорожное полотно?

Нам нужно поставлять на стройплощадки каждый час по 30 000 кирпичей (количество, вмещаемое десятью грузовиками). Следовательно, основная дорога, идущая от завода, будет десяти полосной.

Доехав перекрестка, пять машин поедут налево, а пять других машин повернут направо.

Сколько полос теперь нужно для каждой группы машин? Ответ очевиден — по пять полос.

Можно конечно оставить и десяти полосную на каждое направление. Но согласитесь — это непомерные, ненужные затраты!

Машины доехали до первого ответвления дороги, ведущего к одной из строительных площадок. По одной машине с главных направлений свернуло в сторону к этим площадкам.

Дорога из скольких полос понадобится для каждой из этих машин? Однополосная, не так ли? А что с остальными машинами?

Машин осталось по четыре на каждом направлении. Значит, и дорога для них нужна уже четырех полосная.

Доехав до следующего ответвления, по одной машине снова свернуло на однополосную дорогу и поехало разгружаться к своим площадкам. Три остальных продолжили свое движение по трехполосному дорожному полотну.

Далее главная дорога была уменьшена сначала до двух полос, а затем до одной, по мере того, как по одному грузовику отделялось от основной процессии.

Грузовики вовремя доставили кирпичи до строительных площадок!

Разгрузившись, машины вновь отправились на завод за новой партией кирпичей.

Сначала каждая ехала по однополосной дороге, а как только присоединялись другие, дорога становилась все шире и шире, пока рабочие завода не увидели десять машин, возвращающихся из поездки по десяти полосной дороге.

Подбор диаметра труб по заданной скорости теплоносителя.

Подбор диаметра труб по
скорости теплоносителя.
(режим 80/60)

Приведенное выше описание очень похоже на то, что происходит в двухтрубной тупиковой системе отопления.

В системе отопления есть свой завод, который производит тепло — это котел. Роль дорог играют трубопроводы. Теплоноситель — чаще вода, «везет» тепло к радиаторам, где оно расходуется, восполняя тепловые потери помещения. «Разгрузившаяся» остывшая вода вновь возвращается в котел, чтобы заправиться теплом. Процесс происходит постоянно.

Диаметр труб для системы отопления подбирается по тому же самому принципу, что и ширина дорог из нашего примера. Чем больше требуется передать тепла, которое несет вода, тем больше должен быть диаметр трубы. По мере уменьшения потребности в тепле на каждом отдельном участке, диаметр труб уменьшается.

Какое количество тепла может пропустить та или иная труба?

Опуская подробные объяснения и расчеты по известным формулам, скажем лишь, что одним из распространенных способов определения диаметров труб является задача скорости, с которой будет двигаться теплоноситель внутри трубы.

С одной стороны, скорость теплоносителя не должна быть меньше 0

Проектирование и выбор трубопроводов. Оптимальный диаметр трубопровода

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, реализующих рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигураций трубопроводов большое значение имеет стоимость самих труб и стоимость арматуры. Конечная стоимость передачи среды по трубопроводу во многом определяется размером труб (диаметром и длиной).Для расчета этих значений используются специально разработанные формулы, специфичные для определенных типов операций.

Труба — это полый цилиндр из металла, дерева или другого материала, используемый для транспортировки жидких, газообразных и гранулированных сред. Переносимая среда может включать воду, природный газ, пар, нефтепродукты и т. Д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая домашним хозяйством.

Различные материалы, такие как сталь, чугун, медь, цемент, пластик, например АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутилен, полиэтилен и т. Д., можно использовать при производстве труб.

Диаметр трубы (внешний, внутренний и т. Д.) И толщина стенки, измеряемая в миллиметрах или дюймах, являются основными размерами трубы. Также используется такое значение, как номинальный диаметр или условное отверстие — номинальное значение внутреннего диаметра трубы, также измеряемое в миллиметрах (обозначается Ду ) или дюймах (обозначается DN). Значения номинального диаметра стандартизованы, что является основным критерием при выборе трубы и соединительной арматуры.

Соответствие номинального диаметра в [мм] и [дюймах] указано ниже.

По ряду причин, указанных ниже, трубы с круглым (круглым) поперечным сечением являются предпочтительным вариантом по сравнению с другими геометрическими сечениями:

  • Circle имеет минимальное отношение периметра к площади; применительно к трубам это означает, что при одинаковой пропускной способности расход материала для труб круглой формы будет минимальным по сравнению с трубами другой формы. Это также подразумевает минимально возможные затраты на изоляционные и защитные покрытия;
  • Круглое поперечное сечение является наиболее выгодным вариантом для перемещения жидких или газообразных сред с гидродинамической точки зрения.Кроме того, за счет минимально возможной внутренней площади трубы на единицу ее длины трение между перекачиваемой жидкостью и трубой сводится к минимуму.
  • Круглая форма наиболее устойчива к внутреннему и внешнему давлению;
  • Процесс производства круглых труб достаточно прост и удобен в реализации.

Трубы могут сильно различаться по диаметру и конфигурации в зависимости от назначения и области применения. Поскольку магистральные трубопроводы для перекачки воды или нефтепродуктов могут достигать почти полуметра в диаметре при довольно простой конфигурации, а змеевики, также выполненные в виде трубы малого диаметра, имеют сложную форму с большим количеством витков.

Невозможно представить ни один сектор промышленности без трубопроводной сети. Расчет любой трубопроводной сети включает в себя выбор материалов труб, разработку ведомости материалов, которая включает данные о толщине, размере, маршруте и т.д. трубы. Сырье, промежуточный продукт и / или готовый продукт проходят различные стадии производства, перемещаясь между различными аппаратами и агрегатами. , которые соединяются трубопроводами и арматурой. Правильный расчет, выбор и установка системы трубопроводов необходимы для надежного выполнения всего технологического процесса и обеспечения безопасной передачи рабочих сред, а также для герметизации системы и предотвращения утечки переносимых веществ в атмосферу.

Не существует универсальной формулы или правила для выбора трубопровода для любого возможного применения и рабочей среды. Каждая область применения трубопровода включает ряд факторов, которые следует принимать во внимание и которые могут оказать значительное влияние на требования к трубопроводу. Например, при работе с жидким навозом крупногабаритный трубопровод не только увеличит стоимость установки, но и создаст трудности в эксплуатации.

Обычно трубы выбираются после оптимизации материальных затрат и эксплуатационных затрат.Чем больше диаметр трубопровода, т.е. чем больше первоначальные вложения, тем меньше перепад давления и, соответственно, меньше эксплуатационные расходы. И наоборот, небольшой размер трубопроводов позволит снизить начальную стоимость труб и арматуры; однако повышенная скорость повлечет за собой повышенные потери и приведет к затратам дополнительной энергии на прокачку среды. Значения скорости, фиксированные для различных приложений, основаны на оптимальных расчетных условиях. Эти ставки с учетом области применения используются при расчетах размеров трубопроводов.

Число Рейнольдса

Число Рейнольдса — безразмерная скорость — может быть определено как отношение

  • сила инерции (ρ u L) к вязкая сила или сила трения (μ)

и интерпретируется как отношение

  • динамическое давление (ρ u 2 ) от до напряжение сдвига (μ u / л)

Число Рейнольдса, следовательно, может быть выражено как

Re = ρ u L / μ

= ρ u 2 / (μ u / L)

= u L / ν (1)

где

Re = число Рейнольдса (безразмерное)

ρ = плотность (кг / м 3 , фунт м / фут 3 )

u = скорость, основанная на фактической площади поперечного сечения воздуховода или трубы (м / с, фут / с) 9 0064

μ = динамическая вязкость (Нс / м 2 , фунт м / с · фут)

L = характеристическая длина (м, фут)

ν = μ / ρ = кинематическая вязкость (м 2 / с, фут 2 / с)

Число Рейнольдса для потока в трубе или воздуховоде

Для трубы или воздуховода характерной длиной является гидравлический диаметр.

L = d h

где

d h = гидравлический диаметр (м, фут)

Число Рейнольдса для потока в воздуховоде или трубе может с гидравлическим диаметром быть выражается как

Re = ρ ud h / μ

= ud h / ν (2)

, где

d h = гидравлический диаметр (м, фут)

Число Рейнольдса для трубы или воздуховода в британских единицах

Число Рейнольдса для трубы или воздуховода, выраженное в британских единицах

Re = 7745.8 уд ч / ν (2a)

где

Re = число Рейнольдса (безразмерное)

u = скорость (фут / с)

d h = гидравлический диаметр (дюймы)

ν = кинематическая вязкость (сСт) (1 сСт = 10 -6 м 2 / с)

Число Рейнольдса можно использовать для определения того, является ли поток ламинарным, переходным или турбулентным .Поток

  • ламинарный — когда Re <2300
  • переходный — когда 2300
  • турбулентный — когда Re> 4000

На практике ламинарный поток актуально только для вязких жидкостей, таких как сырая нефть, мазут и другие масла.

Пример — вычисление числа Рейнольдса

Ньютоновская жидкость с динамической или абсолютной вязкостью 0,38 Нс / м 2 и удельным весом 0.91 протекает через трубу диаметром 25 мм и со скоростью 2,6 м / с .

Плотность может быть рассчитана из удельного веса жидкости и плотности эталонной воды 1000 кг / м 3 — as

ρ = 0,91 (1000 кг / м 3 )

= 910 кг / м 3

Число Рейнольдса затем можно рассчитать с помощью уравнения (1) , например

Re = (910 кг / м 3 ) (2.6 м / с) (25 мм) (10 -3 м / мм) / (0,38 Нс / м 2 )

= 156 ((кг м / с 2 ) / Н)

= 156 ~ Ламинарный поток

1 (Н) = 1 (кг м / с 2 )

Связанные мобильные приложения из Engineering ToolBox

— бесплатные приложения для автономного использования на мобильных устройствах.

Онлайн-калькулятор Рейнольдса

Плотность и абсолютная (динамическая) вязкость известны

Этот калькулятор можно использовать, если известны плотность и абсолютная (динамическая) вязкость жидкости.Калькулятор действителен для несжимаемого потока — потока с жидкостями или газами без сжатия — как типичного для воздушных потоков в системах HVAC или аналогичных. Калькулятор является универсальным и может использоваться для метрических и британских единиц измерения при условии, что единицы используются последовательно.

Значения по умолчанию для воздуха при 60 o F , 2 атм давление и плотность 0,146 фунта м / фут 3 , протекающий 20 фут / с между двумя металлическими листами с характеристической длиной 0.5 футов . Динамическая (абсолютная) вязкость составляет 1,22 10 -5 фунтов м / с фут .

Известная кинематическая вязкость

Калькулятор ниже может использоваться, когда известна кинематическая вязкость жидкости. Калькулятор является универсальным и может использоваться для метрических и британских единиц измерения при условии, что единицы используются последовательно.

Значения по умолчанию для воды при 20 o C с кинематической вязкостью 1,004 10 -6 м 2 / с для стальной трубы сортамента 40.Характерная длина (или гидравлический диаметр) трубы 0,102 м .

КАЛЬКУЛЯТОР РАСХОДА

И Н С Т Р У К Т И О Н С

Этот калькулятор ultra отличается тем, что позволяет выбирать между
большое разнообразие единиц (6 для диаметра и 24 каждого для скорости и расхода). В отличие от других калькуляторов, вы НЕ
ограничивается вводом диаметра в дюймах, скорости в милях в час и т. д.сделать этот калькулятор
довольно универсален.

1) Вода течет со скоростью 36 дюймов в секунду и со скоростью
1,0472 кубических футов в секунду. Какой диаметр трубы?
Самый важный шаг в использовании этого калькулятора:
ПЕРВЫЙ ВЫБЕРИТЕ, ЧТО ВЫ РЕШАЕТЕ ДЛЯ
В этом случае мы решаем ДИАМЕТР ТРУБЫ, поэтому нажмите эту кнопку.
Введите 36 в поле скорости и выберите в соответствующем меню дюймы в секунду.
Введите 1,0472 в поле расхода и выберите в соответствующем меню кубические футы в секунду.
Нажмите кнопку РАССЧИТАТЬ, и вы увидите, что это равно 8 дюймам.
И вы увидите ответ в 5 других единицах !!

2) Вода течет по трубе диаметром 10 см со скоростью 9 литров в секунду. Какая скорость воды?
ПЕРВЫЙ НАЖМИТЕ НА ТО, ЧТО ВЫ РЕШАЕТЕ — СКОРОСТЬ
Введите 10 в поле диаметра трубы и выберите сантиметры в его меню.
Введите 9 в поле расхода и выберите в его меню литры в секунду.
Нажмите кнопку РАССЧИТАТЬ, и ответ будет 114.59 сантиметров в секунду И ответ в 23 других единицах !!

3) Вода течет по трубе диаметром 2 фута со скоростью 20 дюймов в секунду. Какая скорость потока?
ПЕРВЫЙ ЩЕЛКНИТЕ НА ТО, ДЛЯ ЧТО ВЫ РЕШАЕТЕ — СКОРОСТЬ ПОТОКА
Введите 2 в поле диаметра трубы и выберите футы в его меню.
Введите 20 в поле скорости и выберите в соответствующем меню дюймы в секунду.
Нажмите кнопку РАССЧИТАТЬ, и ответ будет 5,236 кубических футов в секунду И ответ будет в 23 других единицах !!


Для удобства чтения числа отображаются в формате «значащих цифр», поэтому вы
, а не , см. Такие ответы, как 77.3333333333333333.
Числа больше
более 1000 будет отображаться в экспоненциальном представлении и с таким же количеством
указаны значащие цифры. Вы можете изменить значащие цифры, отображаемые
изменение числа в поле выше.
Internet Explorer и большинство других браузеров будут отображать ответы правильно, но
есть несколько браузеров, которые не будут показывать вообще никакого вывода . Если да, введите ноль
в поле выше. Это устраняет все форматирование, но это лучше, чем не видеть
вывод вообще.

Простые калькуляторы | WBDG — Руководство по проектированию всего здания

Калькулятор контроля конденсации — Горизонтальная труба

Этот калькулятор определяет толщину изоляции, необходимую для предотвращения образования конденсата на внешней поверхности изолированной горизонтальной стальной трубы. Входные данные включают рабочую температуру, условия окружающей среды (температура, относительная влажность и скорость ветра) и сведения о системе изоляции (материал и оболочка).

Изоляционные материалы, включенные в этот калькулятор, были выбраны с учетом некоторых материалов, обычно используемых в промышленности. Список не является исчерпывающим, другие материалы доступны. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.
Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM.В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторе.

Материал Стандарт изоляции
Ячеистое стекло ASTM C 552 Тип II
Эластомер ASTM C 534 Тип I, группа 1
Стекловолокно ASTM C 547 Тип I
Гибкий аэрогель ASTM C 1728 Тип I, группа 1B
Минеральная вата ASTM C 547 Типы II и III
Фенольный ASTM C 1126 Тип III
Полиэтилен ASTM C 1427 Тип I, Gr1
Полиизоцианурат ASTM C 591 Тип IV
Полистирол ASTM C 578 Тип XIII

Калькуляторы потерь энергии, сокращения выбросов, температуры поверхности и годового дохода

Чтобы помочь понять взаимосвязь между энергией, экономикой и выбросами для изолированных систем, были разработаны простые калькуляторы для оборудования (вертикальные плоские поверхности) и горизонтальных трубопроводов.Эти калькуляторы оценивают производительность изолированной системы с учетом рабочей температуры, температуры окружающей среды и других деталей системы.

Алгоритмы, используемые в этих калькуляторах энергии, основаны на методиках расчета, изложенных в ASTM C 680 Стандартная практика для оценки теплового усиления или тепловых потерь и температуры поверхности изолированных плоских, цилиндрических и сферических систем с использованием компьютерных программ . Стандарт ASTM C 680 обычно используется для прогнозирования потерь или увеличения тепла и температуры поверхности определенных систем теплоизоляции, которые могут достигать одномерных, установившихся или квазистационарных условий теплопередачи в полевых условиях.Пользователям рекомендуется ознакомиться с разделами «Объем, значение и использование» этого стандарта.

Вычислитель оборудования оценивает тепловые потоки через вертикальную плоскую стальную поверхность (типичную для сторон большого стального резервуара, содержащего нагретую или охлаждаемую жидкость). Информация, касающаяся гипотетической системы изоляции (например, площадь, рабочая температура, температура окружающей среды, скорость ветра, изоляционный материал и коэффициент излучения поверхности предлагаемой системы изоляции) может вводиться пользователем.Результаты расчетов приведены для различных типов и толщин изоляции и включают: 1) температура поверхности, 2) тепловой поток, 3) годовая стоимость топлива, 4) срок окупаемости, 5) годовая норма прибыли и 6) годовые выбросы CO 2 .

Вычислитель Pipe Calculator оценивает тепловые потоки через горизонтальные стальные трубы. Информация, касающаяся гипотетической системы изоляции (например, длина участка, размер трубы, рабочая температура, температура окружающей среды и скорость ветра, изоляционный материал и коэффициент излучения поверхности предлагаемой системы изоляции) может вводиться пользователем.Результаты расчетов приведены для различных типов и толщин изоляции и включают: 1) температура поверхности, 2) тепловой поток, 3) годовая стоимость топлива, 4) период окупаемости, 5) годовая норма прибыли и 6) годовые выбросы CO 2 .

Следует отметить, что вычислитель горизонтальной трубы и вычислитель вертикальной плоской поверхности были разработаны для типичных применений для механической изоляции. Конечно, встречаются и другие ориентации, геометрии и основные материалы, и их можно проанализировать с помощью доступного программного обеспечения (например,грамм. 3E Plus® доступно на сайте www.pipeinsulation.org).

Для трубопроводных систем ориентация оказывает минимальное влияние, за исключением неизолированной трубы при низких скоростях ветра. Для неизолированной трубы в неподвижном воздухе вертикальный трубопровод обычно имеет меньшие тепловые потери (на 5% или меньше), чем горизонтальный трубопровод того же диаметра. Для изолированных трубопроводов разница в теплопотери (горизонтальная и вертикальная) будет минимальной (менее 1%).

Плоские горизонтальные поверхности в неподвижном воздухе (например, верхняя часть обогреваемых резервуаров) будут иметь более высокие тепловые потери, чем вертикальные поверхности, в то время как горизонтальные поверхности с тепловым потоком вниз (например.грамм. днища обогреваемых резервуаров) будут иметь меньшие тепловые потери, чем вертикальные поверхности. Опять же, различия минимальны для изолированных поверхностей и поверхностей с движущимся воздухом.

Изоляционные материалы, включенные в эти калькуляторы, были выбраны как репрезентативные для некоторых материалов, обычно используемых в промышленности. Список не является исчерпывающим, другие материалы доступны. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.

Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM. В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторах.

Материал Стандарт изоляции плат Стандарт изоляции труб
Силикат кальция ASTM C 533-09 Тип I ASTM C 533-09 Тип I
Ячеистое стекло ASTM C 552-07 Тип I ASTM C 552-07 Тип II
Эластомер ASTM C 534-08 Тип II, группа 1 ASTM C 534-08 Тип I, группа 1
Стекловолокно ASTM C 612-09 Тип I B ASTM C 547-07 Тип I
Минеральная вата ASTM C 612-09 Тип IV B ASTM C 547-07 Тип II
Полиизоцианурат ASTM C 591-08a Тип IV ASTM C 592-08a Тип IV

Смета затрат на системы изоляции предоставлена ​​на основе отраслевых источников и предназначена только для иллюстративных целей.Эти оценки затрат основаны на однослойных установках с алюминиевой оболочкой. Следует отметить, что для некоторых систем изоляции и применений использование алюминиевой оболочки может не потребоваться. Они предполагают беспрепятственный и разумный доступ для установки, без учета фитингов, подвесов или проходов. В эти оценки не включены какие-либо дополнительные замедлители образования пара или герметики. Фактические затраты будут варьироваться в зависимости от местных норм оплаты труда, производительности, сложности и географического расположения работы, реальной системы изоляции и множества других факторов.Множитель стоимости предназначен для помощи в корректировке этих затрат для конкретных систем и условий изоляции.

Финансовая прибыль — Калькулятор соображений

Этот калькулятор был разработан, чтобы обеспечить удобный способ оценки финансовой отдачи от инвестиций в механическую изоляцию: простая окупаемость в годах, внутренняя норма прибыли (IRR или ROI), чистая приведенная стоимость (NPV), а также годовой и совокупный денежный поток. . Его можно использовать для общего проекта механической изоляции или для небольших инвестиций в механическую изоляцию, таких как изоляция клапана или замена участка изоляции.

Расчетное время замерзания воды в изолированной трубе

Этот калькулятор оценивает время, в течение которого длинная заполненная жидкостью труба (без потока) достигает температуры замерзания.

Важно понимать, что изоляция препятствует тепловому потоку; это не останавливает его полностью. Если температура окружающего воздуха остается достаточно низкой в ​​течение длительного периода, изоляция не может предотвратить замерзание стоячей воды или воды, текущей со скоростью, недостаточной для имеющегося теплосодержания для компенсации потерь тепла.Однако хорошо изолированные трубы могут значительно увеличить время замерзания.

Калькулятор защиты персонала для горизонтальных трубопроводов

Этот калькулятор оценивает максимальное время воздействия контакта на внешней поверхности системы изоляции горизонтальных труб на основе вероятности контактных ожогов. Входные требования включают размер трубы, рабочую температуру, температуру окружающей среды и скорость ветра, а также подробную информацию о системе изоляции (материал и оболочка).

Максимальное время воздействия на контакт оценивается с использованием процедур, изложенных в стандарте ASTM C 1055-03 (повторно утвержден в 2009 г.) Стандартное руководство для условий поверхности нагреваемых систем, вызывающих контактные ожоги .Это руководство устанавливает средства, с помощью которых инженер, проектировщик или оператор могут определить допустимую температуру поверхности системы, в которой возможен контакт с нагретой поверхностью. Процедура требует от пользователя принятия нескольких решений. Тщательное документирование рационального решения и промежуточного результата является важной частью процесса оценки.

Для целей данного калькулятора максимальное время контактного воздействия основано на приемлемом уровне повреждения ожогов первой степени (обратимое повреждение эпидермиса или предел, представленный нижней кривой «Порог B», показанной на Рисунке 1 стандарта).Приемлемое время контакта будет зависеть от приложения. Совершенно очевидно, что совершенно разное время контакта может быть оправдано для самых разных случаев, таких как случаи с младенцами и бытовыми приборами, а также опытные взрослые, работающие с промышленным оборудованием. Если доступные стандарты для этого времени не установлены, Стандарт рекомендует следующее на основе обзора медицинской литературы:

Промышленный процесс 5 сек | Потребительские товары 60 сек

Изоляционные материалы, включенные в этот калькулятор, были выбраны как репрезентативные для некоторых материалов, обычно используемых в промышленности.Список не включает все типы материалов, доступны другие материалы. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.

Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM. В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторе.

Материал Стандарт изоляции
Силикат кальция ASTM C 533-09 Тип 1
Ячеистое стекло ASTM C 552-07 Тип I
Эластомер ASTM C 534-08 Тип II, группа 1
Стекловолокно ASTM C 612-09 Тип I B
Минеральная вата ASTM C 612-09 Тип IV B
Полиэтилен ASTM C 1427-07 Тип II, группа 1
Полиизоцианурат ASTM C 591-08a Тип IV
Полистирол ASTM C 578-09 Тип XIII

Вычислители перепада температуры воздуха в изолированном воздуховоде или жидкости в изолированной трубе

Эти калькуляторы оценивают падение (или повышение) температуры воздуха, протекающего в воздуховоде, или жидкости, протекающей по трубе.

Примером является использование изоляции для минимизации изменения температуры (падение или повышение температуры) технологической жидкости от одного места к другому (например, горячая жидкость, текущая по трубе).

Потери тепла из изолированной трубы

Эта таблица Excel моделирует потери тепла из изолированной трубы. Это очень распространенная система в перерабатывающей промышленности — изолированные трубы повсюду, и инженерам необходимо хорошо разбираться в принципах теплопередачи, чтобы моделировать их воздействие. Хотя модель в электронной таблице упрощена для облегчения понимания, сложность может быть легко добавлена.

Жидкость течет по трубе с теплообменом с изоляцией. Тепло теряется из изоляции в окружающую среду за счет конвекции (потери на излучение не учитываются). Термические эффекты стенки трубы не учитываются (хотя это легко реализовать).

Эти уравнения используются в электронной таблице для определения процесса теплопередачи.

  • q — тепловой поток через трубу и изоляцию (Вт · м -1 )
  • T s — температура на поверхности изоляции (K)
  • T a — температура окружающего воздуха (K)
  • T f — температура жидкости внутри трубы (K)
  • D O — диаметр трубы (м)
  • D S — это внешний диаметр изолированной трубы (т.е.е. диаметр трубы плюс двойная толщина изоляции) (м)
  • k — теплопроводность изоляции (Вт · м -1 K -1 )
  • ΔT — разница температур между изоляционной поверхностью и окружающим воздухом T s -T a (K)
  • ч с — коэффициент теплоотдачи теплоизоляции воздуху от поверхности (Вт · м 2 K -1 )

Уравнение для коэффициента поверхностной теплоотдачи h s является корреляцией; можно заменить любые другие допустимые отношения.

Уравнения являются неявными — коэффициент теплопередачи является функцией температуры поверхности T s , но температура поверхности является функцией коэффициента теплопередачи.

Следовательно, уравнения необходимо решать итеративно с помощью Goal Seek в Excel. Просто

  • разорвать цикл, оценив значение T s ,
  • используйте это для расчета всех других свойств (включая скорость теплопередачи)
  • использовать скорость теплопередачи для обратного расчета T с
  • используйте Goal Seek, чтобы уравнять два значения T s , изменяя расчетное значение T s (или любой другой параметр

Вы можете легко изменить уравнения теплопередачи, чтобы включить более сложные эффекты, такие как эффект загрязнения на поверхности трубы, несколько слоев различной изоляции, радиационные потери, толстые большие стенки трубы (которые действуют как теплоотвод) и т. Д.

ТЕПЛОПЕРЕДАЧА СУДНА С ВОЗДУХА

Теплообмен в сосудах с мешалкой может осуществляться либо через внешнюю рубашку на сосуде, либо через внутренние змеевики . Если рубашка или змеевики не могут обеспечить требуемую площадь поверхности, можно использовать контур рециркуляции с внешним теплообменником. В этом случае теплообменник будет спроектирован обычными методами и не будет рассматриваться в этой главе. (См. Теплообменники.)

Куртка может представлять собой либо полную обычную куртку, либо куртку с углублениями, либо куртку из полутруба, часто называемую катушкой, как показано на рис. 1a, рис. 1b и рис. 1c.Дизайн сравнивает Марковиц (1971).

Рисунок 1.

Преимущество обычной куртки состоит в том, что она покрывает всю стену и основную поверхность и очень проста в сборке. Куртка с ямочками позволяет строить из легких металлов, сохраняя при этом прочность. Рубашка из полутруба может быть дешевле для высокого давления на стороне обслуживания и имеет то преимущество, что к разным участкам стены может быть подано более одного обслуживания. Однако ограниченная часть поверхности будет покрыта рубашкой из полутрубы, большой объем сварного шва может вызвать механические проблемы, связанные с термоциклированием, и сварка рубашки должна располагаться на расстоянии от основных сварных швов выпуклого конца, чтобы сохранить механическую целостность стенка сосуда.

Внутренние катушки могут быть полными спиральными катушками или несколькими меньшими кольцевыми катушками. Рисунок 2а и б.

Рисунок 2.

Полностью спиральный змеевик — это более обычная конструкция, позволяющая установить максимальную поверхность, но для этого требуется двухсекционный резервуар с относительно дорогим основным фланцем. Кольцевые катушки меньшего размера могут быть спроектированы так, чтобы их можно было вставлять через большие ответвления на вогнутом конце верхнего сосуда, но они могут оставлять неподвижные, несмешанные области по своей окружности.

Выбор между оболочкой и катушками основан на ряде соображений. Для высококоррозионных или высокореакционных материалов преимущество рубашки заключается в том, что в ней нет дополнительных конструкционных материалов и дополнительной металлической поверхности, контактирующей с технологическим процессом, кроме нормальной стенки сосуда. Также снижается риск контакта охлаждающей жидкости с реакционной массой. При производстве фармацевтических препаратов, тонких химикатов и других продуктов куртка сводит к минимуму загрязнение, так как не требуется чистить лишние поверхности.Для материалов со сложной реологией можно без труда использовать весь диапазон конструкций мешалок с рубашкой. Однако рубашка имеет более низкие характеристики теплопередачи, чем змеевик, так как будет более низкий коэффициент технологической стороны, обычно большая толщина стенки и меньшая площадь поверхности. Куртка может также потребовать более высокого бокового потока при эксплуатации. Для экзотермических реакций сосуд с рубашкой имеет тот недостаток, что отношение площади к объему уменьшается с увеличением масштаба. Использование большего отношения высоты к диаметру в большем масштабе может помочь уменьшить эту проблему, но только в ограниченной степени.Змеевик имеет то преимущество, что может быть обеспечена большая площадь поверхности, например, в одной конкретной высокоэкзотермической реакции 18 м 2 м -3 было установлено в реакторе 5 м 3 . Однако важно не упаковывать катушку настолько плотно, чтобы образовалась фальшивая стена.

Теплопередача в сосуде с перемешиванием обычно используется при серийном производстве, где часто необходимо рассчитать время нагрева или охлаждения партии или охлаждающую способность, необходимую для поддержания экзотермической или эндотермической реакции при постоянной температуре.Также может быть необходимо определить стабильную рабочую область или приемлемую скорость добавления реагента для контролируемой добавлением сильно экзотермической полупериодической реакции. Скорость отвода тепла определяется:

(1)

Для простого случая, когда необходимо охладить или нагреть партию массы, M:

(2)

Для постоянной температуры рабочей стороны T s , например, для парового отопления:

(3)

Время достижения температуры T от начальной температуры T t = 0 составляет:

(4)

Для более сложных ситуаций может потребоваться численное интегрирование, но доступно много подходящих языков динамического моделирования.Для змеевиков и рубашек общий коэффициент теплопередачи можно рассчитать обычным способом:

(5)

где α и α s — коэффициенты теплопередачи на технологической и обслуживающей сторонах соответственно. Сопротивление обрастанию на стороне обслуживания, l / α f , можно будет узнать из местного опыта или, например, от Kern (1950). В качестве общего руководства приблизительные общие коэффициенты, типичные для сосудов с мешалкой и рубашкой, приведены в таблицах 1 и 2.

Таблица 1.Типичные общие коэффициенты для стальных сосудов со стеклянной футеровкой

Рабочий режим U (Вт м −2 K −1 )
Дистилляция / испарение12 Обогрев 310
Охлаждение 200
Охлаждение (охлаждение) 100

Таблица 2. Типичные общие коэффициенты для сосудов из углеродистой и нержавеющей стали с рубашкой

42

97

Duty U (Вт м −2 K −1 )
Обогрев 400
Охлаждение 350
Охлаждение (обслуживание с охлаждением) 9039

Типичный общий коэффициент для хорошо спроектированной катушки будет от 400 до 600 Вт · м 2 K −1 .

Электропроводность материала стенок можно найти в стандартных текстах [Kern, (1950)]. Сопротивление может быть значительным для футеровки некоторых сосудов, например, для облицованной стеклом стали, для которой следует обращаться к данным производителя. Также будут некоторые ограничения на способность стеклянной облицовки выдерживать термический удар.

ССЫЛКИ

Бартон Э. и Уильямс Э. В. (1950) Экспериментальное определение коэффициентов теплопередачи пленки, Trans. I. Chem.Е. , 17: 3.

Флетчер П. (1987) Коэффициенты теплопередачи для конструкции реактора периодического действия с перемешиванием, Инженер-химик , апрель.

Харнби Н., Эдвардс М. Ф. и Ниенов А. В. (1985) Смешивание в обрабатывающей промышленности , Баттервортс.

Керн, Д. К. (1950) Process Heat Transfer , New York: McGraw-Hill.

Книл, М. (1969) Проектирование сосудов с половинными витками, Пер. I. Chem. E. , 47.

Лерер, И.H. (1970) Номер Нуссельта на стороне куртки, Ind. Eng. Chem. ПДД , 9: 4.

Марковиц, Р. Э. (1971) Выбор лучшей оболочки сосуда, Химическая инженерия , 15 ноября.

Ниенов А. В. (1988) Аспекты смешения в реологически сложных жидкостях, Chem. Англ. Res. Des. 66: 1.

Oldshue, J. Y. (1983) Fluid Mixing Technology, , New York: McGraw-Hill.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*