Ограничитель перенапряжения: Ограничитель перенапряжения: устройство, виды, технические характеристики

Содержание

Ограничитель перенапряжения: устройство, виды, технические характеристики

Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий  или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.

Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных  примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Рис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Виды ОПН

В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571. 20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Рис. 4: фарфоровые ОПН

Достаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными  параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

Рис 5: полимерные ОПН

С развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН  подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.

Многоколонковые

В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП.  При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Видео по теме статьи

https://www.youtube.com/watch?v=2ZZwQRD6q4I

Список использованной литературы

  • М.А. Аронов, О.А.Аношин, О.Н.Кондратьев, Т.В.Лопухова. «Ограничители перенапряжений в электроустановках 6-750 кВ»   2001
  • Булат В.А. «Техника высоких напряжений» 2003
  • Александров Г.Н. «Ограничение перенапряжений в электрических сетях» 2003
  • Ю.В.Борц,  Е.В. Чекулаев «Контактная сеть» 1981
  • Базуткин В.В. Ларионов В.П. Пинталь Ю.С. «Техника высоких напряжений: Изоляция и перенапряжения в электрических системах» 1986

нормы, проверяемые параметры, образец протокола

Из-за угрозы возникновения перенапряжений в электрических сетях, и, как следствие, поломки приборов, разрушения изоляции и последующих затрат на восстановление, применяют защиту  в виде ограничителей перенапряжений (ОПН). Которые представляют собой нелинейные приборы, изменяющие величину сопротивления в ответ на возрастание напряжения в сети. Из-за старения и нарушения свойств вилитового материала, нелинейные ОПН могут утрачивать свои характеристики, перегреваться, в результате чего может произойти взрыв, угрожающий безопасности персонала и целостности оборудования. Для предотвращения подобных инцидентов производится испытание ОПН.

Зачем проводят испытания ограничителей перенапряжения?

Проведение испытаний ОПН требуется для контроля за их состоянием. Благодаря чему обеспечивается их работоспособность, как при вводе в работу, так и  в течении всего периода эксплуатации. А организация, эксплуатирующая электроустановку,  может быть уверена в полноценной защите электрооборудования на случай возникновения аварийного скачка напряжения. В зависимости от конкретной ситуации нелинейные ОПН могут подвергаться различным видам испытаний.

Типы испытаний

В зависимости от причин проведения, все испытания ОПН подразделяются на такие категории:

  • Приемо-сдаточные – выполняются для вновь смонтированных устройств с целью определения соответствия параметров уже установленных ОПН. Так как в процессе монтажа или наладки электроустановок разрядники и ОПН могли быть повреждены, из-за чего их характеристики будут отличаться от заявленных. Данная категория испытаний является обязательной для всех ограничителей перенапряжения.
  • Периодические – проводятся для тех моделей, которые уже включены в работу. Производятся с целью осуществления текущего контроля за состоянием защитного оборудования посредством проверки их параметров.
  • Квалификационные – предназначены для определения способности какого-либо предприятия к началу производства ОПН. При этом первая партия подвергается выборочной проверке по ряду параметров, наиболее сложный из которых — его реакция на нерасчетный режим. Во время протекания которого внешняя рубашка подвергается чрезмерному давлению изнутри и создается угроза взрыва.
  • Типовые – призваны учитывать особенности различных категорий, рассчитанных на особенности электроустановок определенного типа.

Периодичность

Испытания ОПН выполняются в соответствии с требованиями международного стандарта МЭК 60099-4:2004, который лег в основу разработки отечественного ГОСТ Р 52725-2007. Помимо них каждый изготовитель самостоятельно может ужесточать требования, в зависимости от индивидуальных особенностей сетей для которых выпускаются устройства. Этими НД регламентируется частота проведения тех или иных измерений.

Сопротивление проверяется с периодичностью: для моделей наружной установки – раз в 3 года, для внутренней – раз в 6 лет. Ток утечки должен проверяться ежегодно до начала грозового периода. Также рекомендуется осуществлять тепловизионный контроль с периодичностью раз в 3 года для сетей до 35 кВ, и раз в 2 года для 110 кВ и выше.

Параметры, проверяемые у ОПН

На различных этапах изготовления и последующей эксплуатации ограничители должны подвергаться тем или иным испытаниям, которые регламентируются вышеприведенными НД:

  • Сопротивление изоляции – проверяется мегаомметром для контроля изоляции;
  • Ток проводимости – позволяет проверить нелинейное сопротивление вилитовых дисков;
  • Воздействие электрическим напряжением – для проверки прочности и устойчивости в различных режимах;
  • Частичные разряды – используются для проверки устойчивости на пробой посредством амплитудных скачков тока;
  • Остаточное напряжение – характеризует способность устройства к накоплению заряда;
  • Механическая прочность – позволяет убедиться, что рубашка выдержит механические нагрузки;
    Рис. 1. Принцип проверки механической прочности
  • Герметичность – определяет сопротивление корпуса проникновению влаги внутрь.

Объем и нормы приёмо-сдаточных испытаний ОПН

Все испытания приемо-сдаточного характера проводятся в соответствии с требованиями, которые устанавливает раздел 1.8.31 ПУЭ 7. Именно он регламентирует методику и те проверки, которые должны проходить вентильные разрядники и ОПН.

В зависимости от класса напряжения на  ОПН подается испытательное напряжение определенной величины, после чего регистрируется величина тока. Также в зависимости от номинального напряжения проверяется сопротивление агрегата. Но мегаомметр, при измерении сопротивления, должен выставляться на определенную величину напряжения.

Измерение тока проводимости

Одной из двух величин, измеряемых для ОПН, является ток проводимости. Перед началом испытаний ОПН необходимо отключить от сети. С его поверхности, ребер и фланцев должна удаляться пыль, мусор и прочие засорители. Категорически запрещается проводить измерения на мокрых или влажных ограничителях, необходимо дожидаться их полного высыхания. К выполнению таких работ должны приступать только работники, которые прошли обучение, имеют соответствующую группу по электробезопасности и право на выполнение таких испытаний. Для измерения тока проводимости используется следующая схема.

Рис. 2. Измерение тока проводимости

Как видите, на данной схеме к выводам испытательной установки (АИИ-70) последовательно подключается сам ОПН и миллиамперметр (мА). С началом испытаний высоковольтного оборудования напряжение от АИИ-70 должно плавно повышаться до установленной величины со скоростью, приблизительно 2 кВ в секунду. При этом температура устройства должна находиться в пределах от – 15 до +20ºС.

После установки уровня напряжения до нормативной величины производится измерение тока. Затем эту величину сравнивают с заводской, которая указывается в паспортных параметрах изготовителем.

В зависимости от уровня напряжения, на которое рассчитаны ОПН, замер тока проводимости производится:

  • Устройствам до 3 кВ – величина не нормируется.
  • От 3 до 35 кВ подается наибольшая величина максимально допустимого напряжения, при котором и производится замер тока. В результате его сравнивают с паспортной нормой.
  • От 110 до 500 кВ на испытуемый объект подается 100 кВ промышленной частоты 50 Гц. Получаемый при этом ток сравнивается с данными заводской инструкции.

Замер сопротивления изоляции

Изоляция, при испытаниях ОПН, измеряется мегаомметром. При этом должен использоваться калиброванный прибор, имеющий отметку о такой поверке. В зависимости от уровня напряжения, на которое рассчитано устройство, изоляция электрооборудования проверяется в соответствии с такими принципами:

  • Для испытаний ОПН до 3 кВ должен применяться мегаомметр на 1 кВ, а величина сопротивления должна быть не менее 1000 МОм.
  • Если испытываются устройства от 3 до 35 кВ, то необходим мегаомметр на 2,5 кВ, а сопротивление, при этом, должно находиться в пределах установленных заводскими инструкциями.
  • Для устройств от 110 до 500 кВ также применяется мегаомметр на 2,5 кВ, а величина сопротивления, при этом, должна быть не менее 3000 МОм. Но при этом, не должна отличаться, от регламентируемой заводскими нормами, более чем на ±30%.

Пример и описание протокола испытания ОПН

Все результаты по испытанию высоковольтного оборудования, включая те же ОПН, должны вноситься в протокол.

Рисунок 3. Пример заполнения протокола испытаний

Посмотрите на рисунок 3, как видите, протокол состоит из двух таблиц. В первой из них указываются паспортные данные. Эта таблица разделяется на 6 колонок, в которые вносятся тип, место его установки, изготовитель, присвоенный на заводе номер, даты выпуска и ввода в работу. Вся информация заносится для каждой фазы отдельно.

Во второй таблице указывается пофазный замер сопротивления. Где он сравнивается с паспортными и базовыми значениями. После проведения испытаний, в протоколе ставятся подписи работников, которые производили замеры.

Видео по теме

Что такое ограничитель перенапряжения?

Рассмотрение конструкции, принципа действия и области применения различного вида ограничителей перенапряжения (высоковольтных и модульных).

Для создания условий безаварийной и долгосрочной эксплуатации огромной массы электрооборудования, используемого, как в промышленности, так и в повседневной деятельности, в первую очередь необходимо обеспечить безопасный способ доставки и стабильность параметров электроэнергии. Особую опасность для электрических потребителей представляет кратковременное многократное превышение значение величины номинального напряжения в электрической сети. В электротехнике это явление известно, как перенапряжение. Как правило, причиной его проявления является воздействие на линии электропередач грозовых явлений или же коммутационных процессов внутри электрической установки. Возникающие импульсы высокого напряжения могут безвозвратно вывести из строя дорогостоящее оборудование, быть причиной возникновения пожаров и взрывов. Для защиты от возникающих пиковых значений напряжения, служат специальные высоковольтные устройства, ограничители перенапряжения, принцип работы и назначение которых мы и рассмотрим далее. Содержание:

Назначение

ОПН предназначены для защиты электроприборов и оборудования от воздействия высоковольтных импульсов напряжения. Благодаря простоте конструкции и надежности, они нашли широкое применение в области энергоснабжения. Данные устройства защиты пришли на смену устаревшим, весьма громоздким вентильным разрядникам. В отличие от предшественников, принцип действия ограничителя заключается не в использовании искровых промежутков. В качестве главного рабочего элемента в ОПН используются нелинейные резисторы, выполненные из материала, основу которого составляет окись цинка.

Устройство

Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.

Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.

Устройство модульного ограничителя перенапряжения предоставлено на фото:

где:

  1. Корпус
  2. Предохранитель
  3. Сменный варисторный модуль
  4. Указатель износа варисторного модуля
  5. Насечки на зажимах

Принцип работы

Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.

Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Технические характеристики

  1. Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
  2. Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
  3. Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
  4. Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
  5. Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
  6. Токовая пропускная способность. Величина эквивалентная классу разряда линии.
  7. Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.

Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.

На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.

Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:

Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.

Будет интересно прочитать:

  • Испытания ограничителей перенапряжения нелинейных
  • Для чего нужно реле напряжения
  • Как защититься от помех в электросети

Нравится0)Не нравится0)

Классификация устройств защиты от импульсных перенапряжений

Узнайте, какие бывают классы УЗИП и где применяется каждый вариант исполнения. Принцип работы устройств защиты от импульсных перенапряжений.

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже. Содержание:

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на din-рейку, либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники. Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН). Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, принцип работы ОПН построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо сделать заземление в доме, иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно подключить УЗИП класса III.

При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.

Напоследок рекомендуем просмотреть полезное видео, в котором подробно рассмотрена классификация устройств защиты от перенапряжений, принцип действия и советы по выбору подходящего аппарата:

Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!

Будет интересно прочитать:

  • Как сделать громоотвод в частном доме
  • Для чего нужна главная заземляющая шина
  • Для чего нужен дифавтомат

Нравится0)Не нравится0)

Испытания ограничителей перенапряжения нелинейных

Обзор методик испытания ограничителей перенапряжения. Нормы и объемы испытаний согласно ПУЭ.

Ограничитель перенапряжения нелинейный (далее ОПН), вне зависимости от величины напряжения, подлежит обязательным испытаниям. Данное изделие может использоваться для защиты от коммутационных перенапряжений и применяться в электроустановках с напряжением 0.4 кВ, 6 кВ, 10 кВ, 35 кВ, 110 кВ и выше. В зависимости от рабочего напряжения испытания регламентируются разными нормативными документами. Например, МЭК 60099-4:2004 – стандарт международный, а также утвержденный на его основе и действующий ГОСТ Р 52725 – 2007. Также принимаются во внимание разнообразные технические условия и ГОСТы проверки оборудования высоковольтного. В этой статье мы вкратце рассмотрим методики, нормы и объемы испытания ОПН. Содержание:

Важность испытаний

Пожалуй, основной нормативный документ, который мы используем и с которым чаще всего сталкиваемся при производстве приемо-сдаточных испытаний – это ПУЭ. Применительно к ограничителям перенапряжения в нем существует глава 1.8, а конкретно пункт 1.8.3. Он устанавливает нормы и объемы испытаний для ОПН и вентильных разрядников.

Кроме приемо-сдаточных, в соответствии с вышеприведенными документами, могут проводиться такие испытания:

  • периодическое;
  • квалификационное;
  • типовое.

Квалификационная проверка данных устройств нужна для того, чтобы определить имеет ли готовность предприятие для выпуска продукции в данном объеме. Это касается первой промышленной серии либо установочной партии. Немаловажным этапом здесь является проверка взрывобезопасности. В процессе эксплуатации ОПН вследствие воздействия различных факторов, одним из которых является нерасчетный режим применения, внутри него может возникать повышенное давление. Как результат возможен взрыв, который влечет за собой повреждения оборудования, которое установлено поблизости, а также, что самое главное – людей, работающих на объекте.

Давайте подробнее остановимся на рассмотрении приемо-сдаточных испытаний. Как отмечалось выше, они регламентируются главой 1.8 ПУЭ п. 1.8.3. Если свести все данные из нее, то получим удобную табличку:

Таким образом, для ОПН существует методика измерения сопротивления и тока проводимости. Как проверить эти параметры рассмотрим ниже.

Замер тока проводимости

На картинке представлены различные схемы подключения для проведения испытаний ОПН, связанных с измерением тока проводимости:

В основном нормативное значение тока проводимости завод изготовитель указывает в техническом паспорте к изделию. Это значение берется на основании проводимых на предприятии испытаний и напрямую зависит от наибольшего длительно прикладываемого напряжения.

Измерение величины тока проводится амперметром или миллиамперметром. К выводам собранной схемы подключается лабораторный источник питания. При подаче нагрузки проводятся измерения тока. Нагрузка должна соответствовать величине наибольшего допустимого длительного напряжения.

Нужно отметить, что работы должны проводиться при установившейся температуре окружающей среды 20 ±15°С, на очищенных и вытертых досуха ограничителях перенапряжения, которые необходимо предварительно отключить от сети.

Замер сопротивления изоляции

Исходя из данных, приведенных в выше представленной таблице, видно, что при испытании ОПН до 3 кВ необходимо использовать мегомметр напряжением 1000 В, если свыше 3 кВ – нужен мегомметр на 2500 В. Измеренное сопротивление для ОПН до 3 кВ должно быть выше 1000 мОм, напряжением от 3 до 35 кВ – должно быть в пределах рекомендованного изготовителем значения, выше 110 кВ – должно составлять не меньше 3000 мОм, в то же время результат не должен отличаться больше чем на ±30% от ранее произведенных испытаний или значений, указанных изготовителем.

О том, как правильно пользоваться мегаомметром, мы рассказали в соответствующей статье, с которой настоятельно рекомендуем ознакомиться!

Помните, что гарантировать безопасное и качественное выполнение работ может только электролаборатория, у которой есть свидетельство на проведение данного вида мероприятий. По окончании замеров составляется протокол о проведении испытаний ОПН. В нем указывается наименование и тип ограничителя, значения замеров сопротивления изоляции и тока проводимости, погодные условия, а также приборы, с помощью которых были произведены замеры. Образец протокола приведен ниже:

Напоследок рекомендуем ознакомиться с полезным материалом, предоставленном на видео (качество видеоролика не очень, но все же информация изложена понятно):

Вот и все, что мы хотели рассказать о методике испытания ОПН. Теперь вы знаете, как проводятся работы и для чего это нужно делать!

Интересное по теме:

  • Испытания кабеля повышенным напряжением
  • Что такое отделитель с короткозамыкателем
  • Устройства защиты от перенапряжения в сети

Нравится0)Не нравится0)

назначение, принцип работы и конструкция

Возникновение аварийных ситуаций при эксплуатации электрических сетей и оборудования в большинстве ситуаций вызываются импульсными скачками напряжения в результате замыкания линий, воздействия атмосферного электричества, ошибок при коммутационных переключениях. Для исключения подобного применяются ОПН.

Аббревиатура ОПН расшифровывается как ограничитель перенапряжения. Данные устройства предназначены для защиты линий и оборудования в ситуациях, когда по той или иной причине нагрузка возрастает в разы, с опасностью возникновения аварии. Рассмотрим особенности конструктивного устройства данных элементов, применяемые разновидности и их технические характеристики, прочие сопутствующие моменты.

ОПН

Конструкция

ОПН представляет собой полупроводниковый элемент, отличающийся нелинейным значением сопротивления. Он выполнен в виде вилитовых дисков, в качестве материала которого используется оксид цинка с добавлением различных примесей.

Указанные диски снабжены защитным покрытием, с электрическими выводами на концах. На один из контактов подаётся напряжение, второй выводится на землю.

ОПН состоит из следующих конструктивных элементов:

  • электрода,
  • полиамидного корпуса,
  • термоусадочной трубки,
  • варистора,
  • силиконовой оболочки.

Конструкция ОПН до 1000 ВКонструкция ОПН выше 1000 В

Принцип действия

В основу принципа действия данного элемента заложена нелинейная характеристика сопротивления. При штатных характеристиках напряжения, его величина близка к нулю, поэтому цепь не замыкается через указанный прибор.

При резком возрастании напряжения, одновременно увеличивается сопротивление. В результате ток проходит через ОПН, замыкаясь на землю. Таким способом обеспечивается выполнение защитной функции.

Виды

В связи с большим разнообразием выполняемых функций, ОНП классифицируют по следующим показателям:

Структура условного обозначение ОПН

Может использоваться комбинация нескольких устройств, с выполнением ступенчатой защиты.

Обозначение ОПН и разрядников на схема

Материал

В зависимости от применённого материала защитной рубашки, защита может производиться посредством следующих видов устройств:

  1. Фарфоровых – наиболее распространённая разновидность. Керамика устойчива к ультрафиолетовому излучению, поэтому может свободно применяться на открытых установках. Благодаря большой механической прочности, такие элементы могут одновременно выполнять роль опорной конструкции. К недостаткам следует отнести большой вес и хрупкость, что грозит травмами персонала при разлёте осколков в результате разрушения элемента.
  2. Полимерных – в качестве материала наружного покрытия используется каучук, винил и другие искусственные составы. Данные устройства не поддаются воздействию влаги, обладают меньшим весом и хорошими диэлектрическими свойствами, способны выдерживать значительные механические воздействия, но накапливают на поверхности атмосферную влагу и плохо реагируют на солнечный свет.
  3. Одноколонковых – в виде полупроводникового элемента с нелинейными характеристиками напряжения, с количеством дисков, в зависимости от категории оборудования.
  4. Многоколонковых – используются на высоковольтном оборудовании и состоят из нескольких компонентов, объединённых в единый узел. Отличаются повышенной надёжностью и способностью реагировать на различные характеристики нагрузки.

Выбор вида ОПН зависит от параметров оборудования и условий его эксплуатации.

Технические характеристики

Конкретная модель отличается следующими техническими характеристиками:

  • временем срабатывания – в зависимости от скорости реакции на перепад напряжения;
  • рабочим напряжением – значением данной величины, при которой элемент способен функционировать без разрушения на определённый временной промежуток;
  • номинальным повышенным напряжением – величиной, которую изделие способно выдержать в течение 10 секунд;
  • током утечки – от воздействия напряжения на ОПН и зависит от омического сопротивления элемента. Значение указанной характеристики – в сотых или тысячных долях ампер, перетекающих по защитному покрытию и полупроводниковому элементу;
  • разрядным током – значение при импульсном скачке напряжения;
  • устойчивостью к току волны перенапряжения – способностью не подвергаться разрушению при воздействии повышенного напряжения.

ОПН стандартизированы по величине указанных характеристик.

Применение и требования к эксплуатации

Указанные защитные устройства широко применяются для защиты линий электропередач, различных электроустановок промышленного назначения, трансформаторных подстанций, распределительных узлов. В быту ОПН используются для защиты вводных распределительных щитков или оборудования высокой ценности.

ОПН должны эксплуатироваться, согласно требованиям действующих правил и нормативов. Подбор устройств производится, исходя из особенностей эксплуатации и характеристик оборудования.

Техническое обслуживание

Данные ограничители не предусматривают разового применения и способны многократно выполнять свою защитную функцию, сбрасывая напряжение на заземлённую шину. Но в процессе эксплуатации элементы могут частично утрачивать рабочие характеристики, вплоть до полной негодности устройств.

Чтобы избежать внепланового выхода элементов из строя, в ходе эксплуатации они должны подвергаться плановым проверка и техническому обслуживанию, с контролем следующих параметров:

  • сопротивления – замеряется мегомметром, не реже 1 раза в каждые 6 лет;
  • тока проводимости – необходимость его проверки возникает при снижении отмеченной выше характеристики;
  • пробивного напряжения и герметичности – проводится перед пуском в работу новых устройств или в случае проведения заводского восстановительного ремонта;
  • тепловизионных измерений – по регламенту изготовителя и составленному на предприятии графику профилактических работ.

Также элементы осматриваются на предмет наличия внешних дефектов в виде подгораний, скопления пыли и загрязнений, разрушения изоляционного покрытия.

Использование ОПН позволяет обеспечить штатную работу электрического оборудования, исключив опасность его повреждения при резких скачках напряжения. Но указанные ограничители должны правильно выбираться и проходить регламентированное обслуживание, для их сохранности и продления срока службы.

Что такое ограничитель перенапряжения или ограничитель перенапряжения?

Зачем нам нужны ограничители перенапряжения?
Скачки напряжения — очень частое явление, и они могут быть вызваны множеством причин. Помимо включения и выключения мощных электронных устройств, некоторые другие виновники скачков напряжения включают близлежащие удары молнии, нарушения в линии электропередач и высокочастотный электромагнитный шум.

С течением времени, по мере развития технологий, электроника становилась все более и более чувствительной к колебаниям электрических токов, питающих их.Микропроцессоры и другие хрупкие компоненты компьютеров и домашнего кинотеатра можно сравнить с темпераментными маленькими дивами: они работают как мечта, но если условия работы станут неблагоприятными, они взорвутся на вас! Из-за этого как никогда важно инвестировать в защиту от перенапряжения.

Как распознать ограничитель перенапряжения?
Независимо от того, знали вы об этом все время или нет, велика вероятность того, что вы ежедневно контактировали с ограничителями перенапряжения.Проще говоря, ограничитель перенапряжения (или устройство защиты от перенапряжения ) — это устройство, которое защищает электронное оборудование от повреждений в случае скачка напряжения.

Они могут иметь форму полос, блоков или даже кальмаров , но все ограничители перенапряжения, по сути, представляют собой блоки распределения энергии, которые делают еще один шаг вперед: они улавливают избыточное электричество, прежде чем оно сможет нанести какой-либо ущерб. Наиболее распространенным компонентом отвода энергии, используемым в сетевых устройствах защиты от перенапряжения в наших домах и офисах, является металлический оксидный варистор или MOV.

Как работает MOV?
MOV, обычно изготовленный из оксида цинка, перекрывает разрыв между линиями питания и заземления ограничителя перенапряжения. Пока электрический ток, идущий к ограничителю перенапряжения — и, как следствие, к устройствам, подключенным к нему, — стабильно держится на уровне 120 вольт, MOV в значительной степени сидит на месте и занимается своим делом. Однако, как только он обнаруживает скачок напряжения, MOV мгновенно вмешивается в ситуацию, перехватывая избыточное напряжение от линии электропередачи и отводя его на линию заземления в процессе, известном как «зажим».

На что следует обращать внимание при использовании ограничителя перенапряжения?
Когда вы покупаете ограничитель перенапряжения, обратите внимание на несколько ключевых функций, которые гарантируют, что вы заберете домой качественный продукт:

  • Световые индикаторы: Световые индикаторы на устройствах защиты от перенапряжения может держать вас в курсе двух вещей: когда действительно происходит скачок напряжения, и о состоянии MOV вашего сетевого фильтра. Важно следить за состоянием MOV, потому что после нескольких хороших скачков он может стать менее эффективным.Благодаря световому индикатору, информирующему вас о том, что происходит внутри вашего ограничителя перенапряжения, вам никогда не придется гадать, получает ли ваша электроника необходимую защиту!
  • Список UL: Список UL — отличный способ узнать, что продукт, который вы покупаете, безопасен и соответствует стандартам. Но с такими предметами, как сетевые фильтры, важно обращать внимание именно на , для какого стандарта UL это устройство указано! На рынке есть некоторые ограничители перенапряжения, которые внесены в списки UL только для своих шнуров питания.Если вы хотите избежать одного из них, убедитесь, что любое устройство защиты от перенапряжения, которое вас интересует, соответствует стандарту UL 1449 , стандарту Underwriters Laboratories для ограничителей перенапряжения.

Находятся ли они дома или в офисе, если какие-либо из ваших ценных электронных компонентов все еще не защищены от скачков напряжения, приходите и посмотрите на CableOrganizer. com. Благодаря нашему широкому выбору ограничителей перенапряжения APC, Tripp Lite и Power Squid®, вы обязательно найдете тот, который идеально подходит для вашего бюджета и области применения!

Ограничители перенапряжения и системы ИБП для дома и офиса

Зачем вам определенно нужен сетевой фильтр

Скорее всего, вы живете в доме с такими гаджетами, как телевизор, компьютер и различная электроника.Знаете ли вы, что эти элементы могут быть легко повреждены и не подлежат ремонту в случае скачка напряжения? Вместо того, чтобы вставлять дорогие предметы прямо в стену, рекомендуется подключить их к сетевым фильтрам. Они будут служить для ограничения мощности, подаваемой на электрические устройства, и предотвращения повреждений или возгорания. Это стоит того!

Что такое скачок напряжения?

Итак, что такое скачок напряжения в первую очередь? Это событие, при котором напряжение электричества, подаваемого в ваш дом, внезапно увеличивается. Общие причины, вызывающие это, включают удары молнии, перебои в подаче электроэнергии и другие различные неисправности. Если вы живете в районе, который очень чувствителен к погодным явлениям, определенно рекомендуется приобрести сетевой фильтр.

Моя розетка не регулирует напряжение?

Ответ на этот вопрос — ваша розетка должна технически регулировать величину напряжения в розетках. Однако стандартные электрические розетки не имеют защиты от мощных скачков напряжения, и поэтому в ваш дом может внезапно произойти скачок электричества.Обычные розетки предназначены для регулирования напряжения в нормальных условиях, но в остальном они не обеспечивают достаточной защиты.

На что обращать внимание на устройство защиты от перенапряжения

Существуют разные типы устройств защиты от перенапряжения, предназначенные для разных приложений и различных настроек. Они работают с использованием системы, которая гарантирует, что энергия остается на безопасном уровне в пределах защитного компонента внутри устройства защиты от перенапряжения. После этого на ваши электрические устройства поступает соответствующее количество энергии.

При покупке сетевого фильтра вы можете получить его в виде удлинителя, сетевого фильтра с одной розеткой или сетевого фильтра для путешествий. Важно отметить, что не все удлинители на самом деле являются устройствами защиты от перенапряжения, особенно если они находятся в более дешевой части спектра. Если вас беспокоит только одно устройство, защита от одной розетки может быть лучшим вариантом.

Не забывайте регулярно менять сетевые фильтры, чтобы убедиться, что они продолжают выполнять свою работу — некоторые модели оснащены световым индикатором, который показывает, когда они почти разряжены.Кроме того, важно понимать, что устройства защиты от перенапряжения могут не казаться необходимыми, пока не произойдет событие, и они вам действительно понадобятся. Устройство защиты от перенапряжения требует гораздо меньших вложений, чем покупка нового электронного оборудования, так почему бы не пойти на это!

Что такое ограничитель перенапряжения (или ограничитель перенапряжения)?

Устройство защиты от перенапряжения — также известное как ограничитель перенапряжения , ограничитель скачков напряжения , ограничитель перенапряжения (TVSS) или устройство защиты от перенапряжения — это название, данное широкой группе устройств, которые разработан для реакции на внезапные или кратковременные перенапряжения.

Устройства защиты от перенапряжения служат защитными устройствами , предотвращающими повреждение оборудования, вызванное ненормальными условиями.

Ограничитель перенапряжения и ограничитель перенапряжения

Разрядник (или грозозащитный разрядник) служит той же цели, что и устройство защиты от перенапряжения : они защищают электрооборудование от условий перенапряжения . Обе они обычно называются SPD (Устройства защиты от перенапряжения).

Разница между ними заключается в масштабе защиты.Ограничители перенапряжения предназначены для крупномасштабной защиты (от среднего до высокого напряжения), а устройства защиты от перенапряжения предназначены для защиты небольшого масштаба (низкое напряжение). Сетевые фильтры могут быть специфичными для конкретного прибора — например, сетевым фильтром для стиральной машины или сетевым фильтром для холодильника — или сетевым фильтром для всего дома.

Ограничители перенапряжения (или разрядники) используются коммунальными предприятиями в системах передачи и распределения электроэнергии для защиты своего электронного оборудования и инфраструктуры.Их также можно найти в крупномасштабных промышленных предприятиях, таких как горнодобывающая промышленность или нефть и газ.

Они защищают от очень больших токов короткого замыкания, например, вызванных молнией — отсюда и название «грозозащитный разрядник». Они выглядят так:

Устройства защиты от перенапряжения используются для защиты бытового и бытового электрооборудования. Они защищают электронные устройства в вашем доме, такие как компьютер, телевизор и холодильник.

Ограничивающее напряжение

Ограничивающее напряжение относится к максимальной величине напряжения, которое может пройти через сетевой фильтр (или электрический прерыватель) до того, как ограничит прохождение через него дальнейшего тока.

Из-за этого ограничители перенапряжения иногда называют « Transient Clamps ».

« Фиксация напряжения » означает ограничение напряжения при обнаружении скачка переходного напряжения выше напряжения фиксации. Вы можете использовать хороший мультиметр для измерения напряжения на выключателе.

Стандарты устройств защиты от перенапряжения

Существует множество национальных и международных стандартов, касающихся устройств защиты от перенапряжения. К наиболее известным из них относятся:

  • IEC 61643-11 Устройства защиты от перенапряжения низкого напряжения — Часть 11: Устройства защиты от перенапряжения, подключенные к энергосистемам низкого напряжения — Требования и методы испытаний
  • IEC 61643-21 Устройство защиты от перенапряжения низкого напряжения устройства — Часть 21: Устройства защиты от перенапряжения, подключенные к телекоммуникационным и сигнальным сетям — Требования к характеристикам и методы испытаний
  • IEC 61643-22 Устройства защиты от перенапряжения низкого напряжения — Часть 22: Устройства защиты от перенапряжения, подключенные к телекоммуникационным и сигнальным сетям — Выбор и принципы применения
  • EN 61643-11, 61643-21 и 61643-22
  • Telcordia Technologies Технический справочник TR-NWT-001011
  • ANSI / IEEE C62. xx
  • AS / NZS 1768 Молниезащита (стандарты Австралии)

Типы устройств защиты от перенапряжений

Типы ограничителей переходного напряжения:

  • Разделительные конденсаторы
  • Стабилитроны
  • Диоды-ограничители переходных процессов (TVS-диоды)
  • Металлооксидные варисторы (MOV)
  • Лавинный диод
  • PolySwitch

Конденсаторы развязки

Конденсаторы развязки (также известные как байпасные конденсаторы) используются для развязки (т.е.е. отдельные) две части электрической цепи.

Где они используются

  • Приложения с низким энергопотреблением
  • Простые схемы

Преимущества

  • Очень низкая стоимость
  • Простота обслуживания
  • Быстродействие

Недостатки

  • Требуется несколько конденсаторы разных размеров для полной защиты
  • Неравномерное подавление

Стабилитроны

Нормальные диоды пропускают ток только в одном направлении — от анода к катоду. Стабилитрон — это особый тип диода, который позволяет току течь (функционально и предсказуемо) в обратном направлении — от катода к аноду — , когда напряжение через диод достигает определенного уровня.

Этот уровень напряжения, необходимый для протекания тока в обратном направлении, известен как напряжение стабилитрона .

Это напряжение стабилитрона будет поддерживаться, даже когда через стабилитрон протекает большой ток. Этот атрибут стабилитрона используется при использовании стабилитрона в качестве ограничителя переходного напряжения.

Стабилитрон специально используется в режиме «обратного смещения» или режиме обратного пробоя, когда напряжение стабилитрона равно желаемому выходному напряжению. Нагрузка поддерживается параллельно стабилитрону, что позволяет стабилитрону действовать как шунтирующий стабилизатор. Стабилитрон проводит избыточный ток и, следовательно, поддерживает постоянное напряжение на нагрузке.

Обратите внимание, что хотя напряжение подавляется, стабилитрон действует скорее как регулятор напряжения, чем как ограничитель напряжения.Это не оптимально для случаев, когда необходимо резко ограничить напряжение.

Где они используются

  • Высокоскоростные линии передачи данных
  • Высокочастотные цепи
  • Фиксация в низкоэнергетических цепях

Преимущества

  • Низкая стоимость
  • Простота обслуживания
  • Быстродействие
  • Двунаправленный
  • Обычно открывается при отказе (в отличие от короткого отказа)

Недостатки

  • Используется только в низковольтных системах ( обратите внимание, что это потому, что напряжение стабилитрона = выходное напряжение, а напряжения стабилитрона не очень высокие )
  • Необходимо соблюдать осторожность, чтобы обеспечить поддержание минимального тока стабилитрона.

Диоды-ограничители переходного напряжения (TVS-диоды)

Где они используются

TVS обычно используются в системах передачи данных.Это связано с их:

  • Быстрое время отклика на условия перенапряжения
  • Долговечность
  • Низкое напряжение ограничения

Все три из этих преимуществ являются желательными характеристиками в системе передачи данных, которые обычно (1) чрезвычайно чувствительны к повреждению вызывается перенапряжением (2) в труднодоступных или часто посещаемых областях и (3) обычно работает при низком напряжении.

Преимущества

  • Низкая стоимость
  • Простота обслуживания
  • Быстродействующая
  • Двунаправленная

Недостатки

  • Используется только в системах низкого напряжения

Руководство по выбору ограничителей перенапряжения | Инженерное дело360

Продукты и услуги

  • Все
  • Новости и аналитика
  • Продукты и услуги
  • Библиотека стандартов
  • Справочная библиотека
  • Сообщество

ПОДПИСАТЬСЯ

АВТОРИЗОВАТЬСЯ

Я забыл свой пароль.

Нет учетной записи?

Зарегистрируйтесь здесь.

Дом

Новости и аналитика

Последние новости и аналитика
Аэрокосмическая промышленность и оборона
Автомобильная промышленность
Строительство и Строительство
Потребитель
Электроника
Энергия и природные ресурсы
Окружающая среда, здоровье и безопасность
Еда и напитки
Естественные науки
Морской
Материалы и химикаты
Цепочка поставок
Пульс360
При поддержке AWS Welding Digest

Товары

Строительство и Строительство

ограничитель перенапряжения — это… Что такое ограничитель перенапряжения?

  • Ограничитель перенапряжения — [англ.], Überspannungsschutz… Universal-Lexikon

  • ограничитель перенапряжения — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ устройство защиты от перенапряжения, ↑ подавитель всплесков, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ подавитель, ↑ подавитель * * *… Полезный английский словарь

  • ограничитель перенапряжения — Устройство регулирования напряжения, размещаемое между компьютером и соединением линии переменного тока, которое защищает компьютерную систему от скачков напряжения; также известный как сетевой фильтр.См. Также регулирование мощности… Словарь по сетям

  • ограничитель перенапряжения — существительное Устройство с несколькими вилками, которое обычно заземляет большую часть энергии и поглощает некоторую энергию при электрическом всплеске… Викисловарь

  • устройство защиты от перенапряжений — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ ограничитель перенапряжения, ↑ ограничитель всплесков, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ подавитель, ↑ подавитель * * *… Полезный английский словарь

  • подавитель — существительное 1.те, кто подавляет диктаторов, являются подавителями свободы слова • Синоним: ↑ suppresser • Производные формы: ↑ suppress (для: ↑ suppresser), ↑ подавить… Полезный английский словарь

  • скачок — Кратковременное, внезапное и часто разрушительное повышение сетевого напряжения. Устройство регулирования напряжения, известное как ограничитель перенапряжения, может защитить компьютерное оборудование от скачков напряжения. См. Также регулирование мощности; шип; ограничитель перенапряжения … Сетевой словарь

  • Устройство защиты от перенапряжений — См. Ограничитель перенапряжения… Словарь по сети

  • Устройство защиты от перенапряжения — Устройство защиты от перенапряжения — это устройство, предназначенное для защиты электрических устройств от скачков напряжения.Устройство защиты от перенапряжений пытается регулировать напряжение, подаваемое на электрическое устройство, путем блокировки или замыкания на землю напряжений выше безопасного…… Wikipedia

  • подавитель всплесков — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ ограничитель перенапряжения, ↑ разрядник, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ супрессор, ↑ подавитель… Полезный английский словарь

  • скачок напряжения — Внезапное, кратковременное и часто разрушительное повышение сетевого напряжения.Скачок напряжения может быть вызван электрическим прибором, таким как копировальный аппарат или лифт, или повторным включением питания после отключения электроэнергии. См. Также регулирование мощности; всплеск;…… Сетевой словарь

  • ограничитель перенапряжения — это … Что такое ограничитель перенапряжения?

  • Ограничитель перенапряжения — [англ.], Überspannungsschutz… Universal-Lexikon

  • ограничитель перенапряжения — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ устройство защиты от перенапряжения, ↑ подавитель всплесков, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ подавитель, ↑ подавитель * * *… Полезный английский словарь

  • ограничитель перенапряжения — Устройство регулирования напряжения, размещаемое между компьютером и соединением линии переменного тока, которое защищает компьютерную систему от скачков напряжения; также известный как сетевой фильтр.См. Также регулирование мощности… Словарь по сетям

  • ограничитель перенапряжения — существительное Устройство с несколькими вилками, которое обычно заземляет большую часть энергии и поглощает некоторую энергию при электрическом всплеске… Викисловарь

  • устройство защиты от перенапряжений — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ ограничитель перенапряжения, ↑ ограничитель всплесков, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ подавитель, ↑ подавитель * * *… Полезный английский словарь

  • подавитель — существительное 1.те, кто подавляет диктаторов, являются подавителями свободы слова • Синоним: ↑ suppresser • Производные формы: ↑ suppress (для: ↑ suppresser), ↑ подавить… Полезный английский словарь

  • скачок — Кратковременное, внезапное и часто разрушительное повышение сетевого напряжения. Устройство регулирования напряжения, известное как ограничитель перенапряжения, может защитить компьютерное оборудование от скачков напряжения. См. Также регулирование мощности; шип; ограничитель перенапряжения … Сетевой словарь

  • Устройство защиты от перенапряжений — См. Ограничитель перенапряжения… Словарь по сети

  • Устройство защиты от перенапряжения — Устройство защиты от перенапряжения — это устройство, предназначенное для защиты электрических устройств от скачков напряжения.Устройство защиты от перенапряжений пытается регулировать напряжение, подаваемое на электрическое устройство, путем блокировки или замыкания на землю напряжений выше безопасного…… Wikipedia

  • подавитель всплесков — существительное электрическое устройство, вставленное в линию электропередачи для защиты оборудования от внезапных колебаний тока • Синхронизация: ↑ ограничитель перенапряжения, ↑ разрядник, ↑ разрядник, ↑ грозозащитный разрядник • Гиперонимы: ↑ супрессор, ↑ подавитель… Полезный английский словарь

  • скачок напряжения — Внезапное, кратковременное и часто разрушительное повышение сетевого напряжения.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    *

    *