Медь 4 квадрата сечение нагрузка: Расчёт сечения провода, кабеля
- Расчёт сечения провода, кабеля
- Зависимость сечения кабеля и провода от токовых нагрузок и мощности
- Выбор мощности, тока и сечения проводов и кабелей
-
Выбор мощности, тока и сечения проводов и кабелей
- Медные жилы, проводов и кабелей
- Алюминиевые жилы, проводов и кабелей
- Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.
- Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.
- Допустимый длительный ток для проводов с медными жилами
- Допустимый длительный ток для кабелей с алюминиевыми жилами
- Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки.
- Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.
- НОВИНКА
-
Выбор мощности, тока и сечения проводов и кабелей
- 4 Квадрата медь сколько держит киловатт
- Какую мощность выдерживает кабель 4 квадрата, 4 кв мм
- Выбор сечения кабеля — stroka.by
- Какой ток выдерживает провод 4 квадрата медь — MOREREMONTA
- Причина нагрева электропроводки
- Площадь сечения проводки
- Расчет мощности в проводке
- Сечение проводов для разных условий эксплуатации
- Рассеивание тепла при работе кабеля
- Выбор сечения провода
- Кратковременные режимы работы
- Как правильно выбрать вводной провод в квартиру?
- Выбор проводки для отдельных групп потребителей
- Как рассчитать трехфазную проводку?
- Заключение
- Расчет длины и максимальной нагрузки электропроводки
- Выбор кабеля для электропроводки в квартире
- — электроснабжение объектов энергетики, проектные, электромонтажные и пусконаладочные работы под ключ
- | Расчет поперечного сечения кабеля
- 1, 1.5, 2.5, 4, 6 квадратных проводов
- Взаимосвязь между площадью поперечного сечения провода и силой тока __Hongle cable
- American Wire Gauge and Circular Mils
- Расчет площади поперечного сечения и пропускной способности проводника_Luoyang Yilan Electric Appliance Co., ООО
- Эксперимент по испытанию на растяжение | Материаловедение и инженерия
- Испытание на растяжение
- Расположение графика 1: эластичная область
- Расположение графика 2: 0.Предел текучести смещения 2%
- Местоположение графика 3: Максимально выдерживаемое напряжение
- Местоположение графика 4: Отказ или перелом
- Испытания на растяжение — композиты
- Процедура
- О материалах
- Свойства материала
- Виртуальные примеры
- Фото галерея
- Взаимосвязь между массой меди, шириной следа и текущей пропускной способностью
Расчёт сечения провода, кабеля
Материал изготовления и сечение проводов является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.
Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.
Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели – основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.
Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ).
Основные показатели, определяющие сечение провода:
-
Металл, из которого изготовлены токопроводящие жилы.
-
Рабочее напряжение, В.
-
Потребляемая мощность, кВт и токовая нагрузка, А.
Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления, могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.
Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.
Так, говоря об электропроводке дома или квартиры, будет оптимальным применение: для «розеточных» — силовых групп медного кабеля или провода с сечением жил 2,5 мм² и для осветительных групп – с сечением жил 1,5 мм². Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.
Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм² способны «держать» нагрузку 4,1 кВт (по току – 19 А), 2,5 мм² – 5,9 кВт (27 А), 4 и 6 мм² – свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».
При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм² максимальная нагрузка составляет чуть больше 4 кВт (по току это – 22 А), для жил сечением 4 мм² – не более 6 кВт.
Не последний фактор в расчете сечения жил проводов и кабелей – рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.
Сечение токопроводящей жилы, кв.мм | Медные жилы, проводов и кабелей | ||||
---|---|---|---|---|---|
Напряжение, 220 В
|
Напряжение, 380 В
| ||||
ток, А
|
мощность, кВт
|
ток, А
|
мощность, кВт
| ||
1,5
|
19
|
4,1
|
16
|
10,5
| |
2,5
|
27
|
5,9
|
25
|
16,5
| |
4
|
38
|
8,3
|
30
|
19,8
| |
6
|
46
|
10,1
|
40
|
26,4
| |
10
|
70
|
15,4
|
50
|
33
| |
16
|
85
|
18,7
|
75
|
49,5
| |
25
|
115
|
25,3
|
90
|
59,4
| |
35
|
135
|
29,7
|
115
|
75,9
| |
50
|
175
|
38,5
|
145
|
95,7
| |
70
|
215
|
47,3
|
180
|
118,8
| |
95
|
260
|
57,2
|
220
|
145,2
| |
120
|
300
|
66
|
260
|
171,6
|
Сечение токопроводящей жилы, кв. мм | Алюминиевые жилы, проводов и кабелей | |||
---|---|---|---|---|
Напряжение, 220 В
|
Напряжение, 380 В
| |||
ток, А
|
мощность, кВт
|
ток, А
|
мощность, кВт
| |
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132
|
Зависимость сечения кабеля и провода от токовых нагрузок и мощности
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей
| ||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминиевые жилы проводов и кабелей
| ||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг
| ||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
| ||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
| |||||||
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — |
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
| |||||||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
|
Р, кВт | 1 | 2 | 3 | 3,5 | 4 | 6 | 8 |
I, A | 4,5 | 9,1 | 13,6 | 15,9 | 18,2 | 27,3 | 36,4 |
Сечение токопроводящей жилы, мм2 | 1 | 1 | 1,5 | 2,5 | 2,5 | 4 | 6 |
Макс. допустимая длина кабеля при указанном сечении, м* | 34,6 | 17,3 | 17,3 | 24,7 | 21,6 | 23 | 27 |
- Медь, U = 380 B, три фазы, трехжильный кабель
Р, кВт | 6 | 12 | 15 | 18 | 21 | 24 | 27 | 35 |
I, A | 9,1 | 18,2 | 22,8 | 27,3 | 31,9 | 36,5 | 41 | 53,2 |
Сечение токопроводящей жилы, мм2 | 1,5 | 2,5 | 4 | 4 | 6 | 6 | 10 | 10 |
Макс. допустимая длина кабеля при указанном сечении, м* | 50,5 | 33,6 | 47,6 | 39,7 | 51 | 44,7 | 66,2 | 51 |
* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля
Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.
Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.
Сечение жил, мм2 | ||
Проводники | медных | алюминиевых |
Шнуры для присоединения бытовых электроприемников | 0,35 | — |
Кабели для присоединения переносных и передвижных электроприемников в промышленных установках | 0,75 | — |
Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах | 1 | — |
Незащищенные изолированные провода для стационарной электропроводки внутри помещений: | ||
непосредственно по основаниям, на роликах, клицах и тросах | 1 | 2,5 |
на лотках, в коробах (кроме глухих): | ||
для жил, присоединяемых к винтовым зажимам | 1 | 2 |
для жил, присоединяемых пайкой: | ||
однопроволочных | 0,5 | — |
многопроволочных (гибких) | 0,35 | — |
на изоляторах | 1,5 | 4 |
Незащищенные изолированные провода в наружных электропроводках: | ||
по стенам, конструкциям или опорам на изоляторах; | 2,5 | 4 |
вводы от воздушной линии | ||
под навесами на роликах | 1,5 | 2,5 |
Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах | 1 | 2 |
Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов): | ||
для жил, присоединяемых к винтовым зажимам | 1 | 2 |
для жил, присоединяемых пайкой: | ||
однопроволочных | 0,5 | — |
многопроволочных (гибких) | 0,35 | — |
Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой) | 1 | 2 |
Продукция:
Услуги:
НОВИНКА
ECOLED-100-105W-
13600-D120 CITY
Светильник используют для освещения территорий предприятий, автостоянок, дворов, складских и производственных помещений.
ПОДРОБНЕЕ
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | |||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ||||
1,5 | 19 | 4,1 | 16 | 10,5 | |||
2,5 | 27 | 5,9 | 25 | 16,5 | |||
4 | 38 | 8,3 | 30 | 19,8 | |||
6 | 46 | 10,1 | 40 | 26,4 | |||
10 | 70 | 15,4 | 50 | 33,0 | |||
16 | 85 | 18,7 | 75 | 49,5 | |||
25 | 115 | 25,3 | 90 | 59,4 | |||
35 | 135 | 29,7 | 115 | 75,9 | |||
50 | 175 | 38,5 | 145 | 95,7 | |||
70 | 215 | 47,3 | 180 | 118,8 | |||
95 | 260 | 57,2 | 220 | 145,2 | |||
120 | 300 | 66,0 | 260 | 171,6 | |||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | |||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ||||
2,5 | 20 | 4,4 | 19 | 12,5 | |||
4 | 28 | 6,1 | 23 | 15,1 | |||
6 | 36 | 7,9 | 30 | 19,8 | |||
10 | 50 | 11,0 | 39 | 25,7 | |||
16 | 60 | 13,2 | 55 | 36,3 | |||
25 | 85 | 18,7 | 70 | 46,2 | |||
35 | 100 | 22,0 | 85 | 56,1 | |||
50 | 135 | 29,7 | 110 | 72,6 | |||
70 | 165 | 36,3 | 140 | 92,4 | |||
95 | 200 | 44,0 | 170 | 112,2 | |||
120 | 230 | 50,6 | 200 | 132,0 | |||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | |||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | |||
0,5 | 11 | — | — | — | — | — | |
0,75 | 15 | — | — | — | — | — | |
1 | 17 | 16 | 15 | 14 | 15 | 14 | |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 | |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 | |
2 | 26 | 24 | 22 | 20 | 23 | 19 | |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 | |
3 | 34 | 32 | 28 | 26 | 28 | 24 | |
4 | 41 | 38 | 35 | 30 | 32 | 27 | |
5 | 46 | 42 | 39 | 34 | 37 | 31 | |
6 | 50 | 46 | 42 | 40 | 40 | 34 | |
8 | 62 | 54 | 51 | 46 | 48 | 43 | |
10 | 80 | 70 | 60 | 50 | 55 | 50 | |
16 | 100 | 85 | 80 | 75 | 80 | 70 | |
25 | 140 | 115 | 100 | 90 | 100 | 85 | |
35 | 170 | 135 | 125 | 115 | 125 | 100 | |
50 | 215 | 185 | 170 | 150 | 160 | 135 | |
70 | 270 | 225 | 210 | 185 | 195 | 175 | |
95 | 330 | 275 | 255 | 225 | 245 | 215 | |
120 | 385 | 315 | 290 | 260 | 295 | 250 | |
150 | 440 | 360 | 330 | — | — | — | |
185 | 510 | — | — | — | — | — | |
240 | 605 | — | — | — | — | — | |
300 | 695 | — | — | — | — | — | |
400 | 830 | — | — | — | — | — | |
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | |||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | |||
2 | 21 | 19 | 18 | 15 | 17 | 14 | |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 | |
3 | 27 | 24 | 22 | 21 | 22 | 18 | |
4 | 32 | 28 | 28 | 23 | 25 | 21 | |
5 | 36 | 32 | 30 | 27 | 28 | 24 | |
6 | 39 | 36 | 32 | 30 | 31 | 26 | |
8 | 46 | 43 | 40 | 37 | 38 | 32 | |
10 | 60 | 50 | 47 | 39 | 42 | 38 | |
16 | 75 | 60 | 60 | 55 | 60 | 55 | |
25 | 105 | 85 | 80 | 70 | 75 | 65 | |
35 | 130 | 100 | 95 | 85 | 95 | 75 | |
50 | 165 | 140 | 130 | 120 | 125 | 105 | |
70 | 210 | 175 | 165 | 140 | 150 | 135 | |
95 | 255 | 215 | 200 | 175 | 190 | 165 | |
120 | 295 | 245 | 220 | 200 | 230 | 190 | |
150 | 340 | 275 | 255 | — | — | — | |
185 | 390 | — | — | — | — | — | |
240 | 465 | — | — | — | — | — | |
300 | 535 | — | — | — | — | — | |
400 | 645 | — | — | — | — | — | |
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — | ||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Электромонтажные работы – сложное и ответственное мероприятие. Если Вашей квалификации достаточно, чтобы сделать электропроводку в квартире своими руками, пригодятся полезные советы. Если — нет, то воспользуйтесь услугами специалистов по электромонтажным работам . Итак, поговорим о выборе сечения проводов по току и мощности в деталях.
Расчет длины и максимальной нагрузки электропроводки
Правильный расчет сечения проводов по мощности и току – важное условие бесперебойной и безаварийной работы электросистемы. Сначала рассчитывают общую длину электропроводки. Первый способ — измерить расстояния между щитками, выключателями и розетками на электромонтажной схеме, умножая число на масштаб. Второй способ – определить длину по месту, где запроектирована электропроводка. Она включает в себя все провода, установочные и монтажные кабели вместе с креплениями, поддерживающими и защитными конструкциями. Каждый отрезок необходимо удлинить минимум на 1 см, с учетом соединений проводов.
Дальше рассчитывается общая нагрузка потребляемой электроэнергии. Это сумма номинальных мощностей всех электроприборов, которые будут работать в доме (*см. таблицу в конце статьи). Например, если на кухне в одно время включены электрочайник, электроплита, микроволновка, светильники, посудомоечная машина, суммируем мощности всех приборов и умножаем на 0,75 (коээфициент одновременности). Расчет нагрузки должен всегда иметь запас надежности и прочности. Запоминаем эту цифру для определения сечения жил проводов.
Самостоятельно определить потребляемый ток любого электроприбора поможет простая формула. Разделите потребляемую мощность (см. инструкцию к прибору) на напряжение в сети (220 В). К примеру, по паспорту мощность стиральной машины 2000 Вт; 2000/220 = максимальный ток во время работы не превысит 9,1А.
Другой вариант – воспользоваться рекомендациями ПУЭ (Правила устройства электроустановок), по которым стандартная квартирная электропроводка при длительной нагрузке 25А рассчитывается на максимальный ток потребления, выполняется медным проводом сечением 5мм 2 . По ПУЭ сечение жилы должно быть не менее 2,5мм 2 , что соответствует диаметру проводника 1,8 мм.
На такой ток устанавливается и защитный автомат на вводе проводов в квартиру для предотвращения аварий. В жилых зданиях используется однофазный ток напряжением 220 В. Подсчитанную общую нагрузку делим на величину напряжения (220 В) и получаем ток, который будет проходить через вводный кабель и автомат. Покупать автомат нужно с точными или близкими параметрами, с запасом по нагрузке тока.
Выбор кабеля для электропроводки в квартире
Для монтажа домашней электропроводки выбирают трехжильный кабель, один проводник идет на заземление. Жила – это токоведущая часть провода, может быть одно- или многопроволочной. Жилы имеют стандартные сечения, покрыты изолирующей полимерной или резиновой оболочкой, иногда с защитной х/б оплеткой сверху. Делают жилы провода из меди, алюминия или стали.
Наилучший вариант для новой электропроводки в квартире — медный провод. Это надежнее, долговечнее, электрические показатели меди лучше, чем у алюминия.
Что касается марки кабеля, чаще всего используется кабель ВВГ и ВВГнг – медные провода плоской формы, в двойной ПВХ изоляции («нг» говорит о негорючей изоляции провода). Предназначен для выполнения проводки внутри зданий, на открытом воздухе в земле при прокладке в тубах, работает при температуре окружающей среды от -50 до +50°С. Срок службы до 30 лет. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 35,0 мм 2 . (Обратите внимание, что при обозначении АВВГ, жилы в проводе алюминиевые.)
Аналог российскому ВВГ — кабель NYM, круглой формы, с медными жилами и негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения практически те же. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 4,0 мм 2 .
Круглый кабель удобнее прокладывать сквозь стены — отверстия сверлятся немного больше диаметра кабеля. Для внутренней проводки более удобен плоский кабель ВВГ.
Легкие и дешевые алюминиевые провода незаменимы при прокладке воздушной электропроводки, при грамотном соединении имеют длительный срок службы, поскольку алюминий почти не окисляется. С алюминиевой электропроводкой можно столкнуться при ремонте в старых домах. Когда требуется подключить дополнительные энергоемкие приборы, определяют по сечению или диаметру жил проводов способность проводки из алюминия выдержать большую нагрузку (см. таблицу).
Длительно допустимые токовые нагрузки на алюминиевые провода в разы меньше, чем при использовании медных проводов и кабелей аналогичного сечения.
Провод медный 4 квадрата, какою нагрузку выдерживает?
Что можно подключить из мощных потребителей на провод сечением 4 миллиметра?
Хотя вопрос и стоит об нагрузке в 4 квадрата медного кабеля, но всё-таки необходимо понимать, что исполнение проводов бывает различное, соответственно и нагрузка будет разной, по этой причине при расчёте пользуйтесь не только полученной цифрой, но и сравнивайте технические характеристики по определённой маркировке кабеля.
Итак ниже приведены параметры для кабеля на 4 квадрата по маркировке (речь идёт о 3-х жильных кабелях):
Допустимый ток кабеля NYM 3*4: 34 ампер.
Номинальное переменное напряжение: 500 Вольт.
Активное сопротивление жилы: 4,65 Ом в километре.
Кабель ВБбШв 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель бронированный ВБбШвнг 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабеля силовой ВБбШвнг-LS 3*4
Допустимый ток при прокладке кабеля на воздухе — 36 Ампер.
Допустимый ток при прокладке бронированного кабеля в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель ВВГ-П 3х4
Допустимый ток при прокладке ВВГ-П 3х4 на воздухе: 36 Ампер.
Допустимый ток при прокладке в земле: 47 Ампер.
Допустимый ток односекундного короткого замыкания: 430 Ампер.
Активное сопротивление жилы: 4.65 Ом на километр.
Последний кабель, ВВГ-П 3х4, в основном и применяется при прокладке электрических проводов в квартире, считается самым распространённым и оптимальным в потреблении для домашних нужд.
Для начала, чтобы не опытные мастера и строители понимали в чём дело, и почему ответ на этот вопрос не однозначный, давайте разберём условие вопроса, а именно: что такое медный провод (какие они бывают) и что такое «4 квадрата».
1) Медные провода — исполнение этих проводов очень различное, так под одним сечением могут выпускаться разные провода, общее между ними только в том, что они медные и имеют одинаковый диаметр, а вот сам кабель и изоляция различаются. Кабеля могут быть как сплошные, так и многожильные, а изоляция выполнена из различных материалов. По маркировке это кабеля: ВВГ, NYM, ПВС, ШВВП, КГ, ВББШв, ПБПП, ПУНП, ППВ, ПВ1, ПВ3 и прочие.
2) «4 квадрата» — так в электрике обозначают провод диаметром в 4 миллиметра, имеется ввиду одна жила. В одном кабеле могут находится от одной и более жил, также они могут различаться по сечению.
3) Надо знать нагрузку, которая измеряется в Амперах. Данный показатель может иметь градацию в зависимости от условий эксплуатации кабеля.
Итак, для каждого кабеля будет своё значение нагрузки. При строительстве квартир в последнее время всё больше используют кабеля ВВГ, с них и начнём.
ВВГ
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 44 Ампера (минимум 36, перегрузка 40)
- 3 жилы основные — 37 Ампер (минимум 33, перегрузка 40)
- 4 жилы основные — 34 Ампера (минимум 33, перегрузка 37)
Если кабель проложен в земле, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 47 Ампер (перегрузка 54)
- 3 жилы основные — 47 Ампер (перегрузка 54)
- 4 жилы основные — 43 Ампера (перегрузка 50)
NYM
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 41 Ампер (перегрузка 60)
- 3 жилы — 35 Ампер (перегрузка 49)
ПВС
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 38 Ампер допустимый
ШВВП
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 32 Ампера
Остальные кабеля менее распространены при строительстве.
Из описания видно, что влияние на нагрузку происходит не только от того, как исполнен кабель, но также и где он проложен. Также в описании напряжения приведены при использовании тока в 220 Вольт, для тока в 380 Вольт нагрузка на кабель будет другая!
________________ ________
Остаётся открытым вопрос о том, какие потребители можно вешать на медный кабель с сечением в 4 квадрата. По характеристикам, вне зависимости от исполнения и способа прокладки, данный кабель в 4 миллиметра выдерживает мощность всех бытовых приборов (они все исполнены под нагрузку не более 32 Ампер). В число бытовых приборов также можно включить и электроплиту, большинство которых (имеется ввиду бытовые, не профессиональные!) рассчитаны также на нагрузку до 32 Ампер.
________________ _
При подключении бытовой техники с увеличенной нагрузкой и при использовании кабеля на 4 квадрата, обращайте внимание и на применение розеток, они также должны быть рассчитаны на нагрузку в 32 ампера!
Смотрите характеристики прямо на корпусе розетки.
Какую мощность выдерживает кабель 4 квадрата, 4 кв мм
Для начала, чтобы не опытные мастера и строители понимали в чём дело, и почему ответ на этот вопрос не однозначный, давайте разберём условие вопроса, а именно: что такое медный провод (какие они бывают) и что такое «4 квадрата».
1) Медные провода — исполнение этих проводов очень различное, так под одним сечением могут выпускаться разные провода, общее между ними только в том, что они медные и имеют одинаковый диаметр, а вот сам кабель и изоляция различаются. Кабеля могут быть как сплошные, так и многожильные, а изоляция выполнена из различных материалов. По маркировке это кабеля: ВВГ, NYM, ПВС, ШВВП, КГ, ВББШв, ПБПП, ПУНП, ППВ, ПВ1, ПВ3 и прочие.
2) «4 квадрата» — так в электрике обозначают провод диаметром в 4 миллиметра, имеется ввиду одна жила. В одном кабеле могут находится от одной и более жил, также они могут различаться по сечению.
3) Надо знать нагрузку, которая измеряется в Амперах. Данный показатель может иметь градацию в зависимости от условий эксплуатации кабеля.
Итак, для каждого кабеля будет своё значение нагрузки. При строительстве квартир в последнее время всё больше используют кабеля ВВГ, с них и начнём.
ВВГ
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 44 Ампера (минимум 36, перегрузка 40)
- 3 жилы основные — 37 Ампер (минимум 33, перегрузка 40)
- 4 жилы основные — 34 Ампера (минимум 33, перегрузка 37)
Если кабель проложен в земле, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 47 Ампер (перегрузка 54)
- 3 жилы основные — 47 Ампер (перегрузка 54)
- 4 жилы основные — 43 Ампера (перегрузка 50)
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 41 Ампер (перегрузка 60)
- 3 жилы — 35 Ампер (перегрузка 49)
ПВС
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 38 Ампер допустимый
ШВВП
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 32 Ампера
Остальные кабеля менее распространены при строительстве.
Из описания видно, что влияние на нагрузку происходит не только от того, как исполнен кабель, но также и где он проложен. Также в описании напряжения приведены при использовании тока в 220 Вольт, для тока в 380 Вольт нагрузка на кабель будет другая!
________________________
Остаётся открытым вопрос о том, какие потребители можно вешать на медный кабель с сечением в 4 квадрата. По характеристикам, вне зависимости от исполнения и способа прокладки, данный кабель в 4 миллиметра выдерживает мощность всех бытовых приборов (они все исполнены под нагрузку не более 32 Ампер). В число бытовых приборов также можно включить и электроплиту, большинство которых (имеется ввиду бытовые, не профессиональные!) рассчитаны также на нагрузку до 32 Ампер.
Описание провода ПВ 1 4,0 кв.мм
Провод установочный ПВ 1 это провод с поливинилхлоридной изоляцией.
Применение провода ПВ 1 4,0 кв.мм
Провод ПВ 1 применяется для прокладки в стальных трубах, пустотных каналах строительных конструкций, монтажных и осветительных сетей с рабочим напряжением до 450 В частотой до 400 Гц.
Провода ПВ 1 4,0 кв.мм используются для электрических установок при стационарной прокладке в осветительных и силовых сетях. Также провод ПВ 1 служит для монтажа электрооборудования, машин, механизмов и станков на номинальное напряжение до 450 В (для сетей до 450/750 В) частотой до 400 Гц или постоянное напряжение до 1000 В.
Структура провода ПВ 1 4,0 кв.мм
- Токопроводящая жила провода ПВ 1 медная, однопроволочная или многопроволочная, класса 1 по ГОСТ 22483.
- Изоляция провода ПВ 1 из ПВХ пластиката различных цветов. Расцветка выполняется сплошной или нанесением двух продольных полос на изоляции натурального цвета, расположенных диаметрально. Для проводов, используемых только для целей заземления, изоляция имеет зелено-желтую расцветку. Цвет сплошной изоляции или наносимых продольных полос должен быть оговорен в заказе и имеет условное обозначение.
Технические характеристики провода ПВ 1 4,0 кв.мм
Провод ПВ 1 4,0 кв.мм обладает стойкостью к синусоидальной вибрации, акустическому шуму, механическим ударам одиночного и многократного действия, линейному ускорению, пониженному и повышенному атмосферному давлению, плесневым грибам.
Вид клиатического исполнения провода ПВ 1 — ОМ и ХЛ, категория размещения 2 по ГОСТ 15150-69.
Провода ПВ 1 не распространяют горение.
Тип жилы | Одножильная |
Количество жил | 1 |
Сечение жил провода ПВ 1, мм2 | 4 |
Расчетная масса провода ПВ 1, кг/км | 45 |
Номинальный наружный диаметр провода ПВ 1, мм | 4,4 |
Строительная длина проводов | не менее 100 м |
Номинальное напряжение, кВ | 0,66-1 |
Температура окружающей среды при эксплуатации | от +70° С до –50° С |
Относительная влажность воздуха (при t° +35° С) | 100% |
Предельно допустимая t° нагрева жил при эксплуатации | +70° |
Минимальная t° прокладки кабеля без предварительного подогрева | –15° С |
Минимально допустимый радиус изгиба при прокладке | 10 диаметров кабеля |
Срок службы в нормальных условиях эксплуатации | не менее 15 лет |
Гарантийный срок эксплуатации кабеля ПВ 1 | 2 года со дня ввода проводов в эксплуатацию |
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей
Алюминиевые жилы проводов и кабелей
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Провод медный 4 квадрата, какою нагрузку выдерживает?
Что можно подключить из мощных потребителей на провод сечением 4 миллиметра?
Хотя вопрос и стоит об нагрузке в 4 квадрата медного кабеля, но всё-таки необходимо понимать, что исполнение проводов бывает различное, соответственно и нагрузка будет разной, по этой причине при расчёте пользуйтесь не только полученной цифрой, но и сравнивайте технические характеристики по определённой маркировке кабеля.
Итак ниже приведены параметры для кабеля на 4 квадрата по маркировке (речь идёт о 3-х жильных кабелях):
Допустимый ток кабеля NYM 3*4: 34 ампер.
Номинальное переменное напряжение: 500 Вольт.
Активное сопротивление жилы: 4,65 Ом в километре.
Кабель ВБбШв 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель бронированный ВБбШвнг 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабеля силовой ВБбШвнг-LS 3*4
Допустимый ток при прокладке кабеля на воздухе — 36 Ампер.
Допустимый ток при прокладке бронированного кабеля в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель ВВГ-П 3х4
Допустимый ток при прокладке ВВГ-П 3х4 на воздухе: 36 Ампер.
Допустимый ток при прокладке в земле: 47 Ампер.
Допустимый ток односекундного короткого замыкания: 430 Ампер.
Активное сопротивление жилы: 4.65 Ом на километр.
Последний кабель, ВВГ-П 3х4, в основном и применяется при прокладке электрических проводов в квартире, считается самым распространённым и оптимальным в потреблении для домашних нужд.
Для начала, чтобы не опытные мастера и строители понимали в чём дело, и почему ответ на этот вопрос не однозначный, давайте разберём условие вопроса, а именно: что такое медный провод (какие они бывают) и что такое «4 квадрата».
1) Медные провода — исполнение этих проводов очень различное, так под одним сечением могут выпускаться разные провода, общее между ними только в том, что они медные и имеют одинаковый диаметр, а вот сам кабель и изоляция различаются. Кабеля могут быть как сплошные, так и многожильные, а изоляция выполнена из различных материалов. По маркировке это кабеля: ВВГ, NYM, ПВС, ШВВП, КГ, ВББШв, ПБПП, ПУНП, ППВ, ПВ1, ПВ3 и прочие.
2) «4 квадрата» — так в электрике обозначают провод диаметром в 4 миллиметра, имеется ввиду одна жила. В одном кабеле могут находится от одной и более жил, также они могут различаться по сечению.
3) Надо знать нагрузку, которая измеряется в Амперах. Данный показатель может иметь градацию в зависимости от условий эксплуатации кабеля.
Итак, для каждого кабеля будет своё значение нагрузки. При строительстве квартир в последнее время всё больше используют кабеля ВВГ, с них и начнём.
ВВГ
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 44 Ампера (минимум 36, перегрузка 40)
- 3 жилы основные — 37 Ампер (минимум 33, перегрузка 40)
- 4 жилы основные — 34 Ампера (минимум 33, перегрузка 37)
Если кабель проложен в земле, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 47 Ампер (перегрузка 54)
- 3 жилы основные — 47 Ампер (перегрузка 54)
- 4 жилы основные — 43 Ампера (перегрузка 50)
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 41 Ампер (перегрузка 60)
- 3 жилы — 35 Ампер (перегрузка 49)
ПВС
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 38 Ампер допустимый
ШВВП
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 32 Ампера
Остальные кабеля менее распространены при строительстве.
Из описания видно, что влияние на нагрузку происходит не только от того, как исполнен кабель, но также и где он проложен. Также в описании напряжения приведены при использовании тока в 220 Вольт, для тока в 380 Вольт нагрузка на кабель будет другая!
________________ ________
Остаётся открытым вопрос о том, какие потребители можно вешать на медный кабель с сечением в 4 квадрата. По характеристикам, вне зависимости от исполнения и способа прокладки, данный кабель в 4 миллиметра выдерживает мощность всех бытовых приборов (они все исполнены под нагрузку не более 32 Ампер). В число бытовых приборов также можно включить и электроплиту, большинство которых (имеется ввиду бытовые, не профессиональные!) рассчитаны также на нагрузку до 32 Ампер.
________________ _
При подключении бытовой техники с увеличенной нагрузкой и при использовании кабеля на 4 квадрата, обращайте внимание и на применение розеток, они также должны быть рассчитаны на нагрузку в 32 ампера!
Смотрите характеристики прямо на корпусе розетки.
Таблица мощности кабеля требуется чтобы правильно произвести расчет сечения кабеля, если мощность оборудования большая, а сечение кабеля маленькое, то будет происходить его нагревание, что приведет к разрушению изоляции и потере его свойств.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Для передачи и распределения электрического тока основным средством являются кабели, они обеспечивают нормальную работу всего, что связано с электрическим током и насколько качественной будет эта работа, зависит от правильного выбора сечения кабеля по мощности. Удобная таблица поможет сделать необходимый подбор:
Сечение токо-
проводящих
жил. мм
Медные жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Сечение
Tоко-
проводящих
жил. мм
Алюминиевых жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Но чтобы пользоваться таблицей, необходимо рассчитать общую потребляемую мощность приборов и оборудования, которые используются в доме, квартире или другом месте, куда будет проведен кабель.
Пример расчета мощности.
Допустим, выполняется в доме монтаж закрытой электропроводки кабелем ВВ. На лист бумаги необходимо переписать список используемого оборудования.
Но как теперь узнать мощность? Найти ее можно на самом оборудовании, где обычно есть бирка с записанными основными характеристиками.
Измеряется мощность в Ваттах (Вт, W) либо Киловаттах (кВт, KW). Теперь нужно записать данные, а затем их сложить.
Полученное число составляет, например, 20 000 Вт, это будет 20 кВт. Эта цифра показывает, сколько все электроприемники вместе потребляют энергии. Далее следует обдумать, какое количество приборов в течении длительного периода времени будет использоваться одновременно. Допустим получилось 80 %, в таком случае, коэффициент одновременности будет равен 0,8. Производим по мощности расчет сечения кабеля:
20 х 0,8 = 16 (кВт)
Для выбора сечения понадобится таблица мощности кабеля:
Сечение токо-
проводящих
жил. мм
Медные жилы проводов и кабелей
Наконец-то мне удалось проверить, какие токи выдерживает силовой кабель, сечением «полтора квадрата».
Это очень важное знание для понимания, где допустимо использовать такой кабель и какими автоматами его нужно защищать.
У меня в квартире ко всем розеткам проложены кабели 1.5 мм², защищённые автоматом 16А, и мне всегда хотелось понять, насколько это допустимо.
Почти все электрики придерживаются правила «кабель 1.5 мм² годится только на свет, а для розеток нужно прокладывать 2.5 мм²».
Продвинутые электрики утверждают, что кабель 1.5 мм² необходимо защищать автоматами 10А, а кабель 2.5 мм² автоматами 16А, аргументируя это тем, что любой автоматический выключатель с характеристикой «С» выдерживает ток в 1.45 раза выше номинального до часа.
Ещё ходит байка, что 2.5 мм² на розетки начали прокладывать тогда, когда весь кабель был «поддельный», сделанный по ТУ, и его реальное сечение было существенно меньше номинального.
Уверен, что никто из этих электриков никогда не проверял реальные характеристики кабеля и не может чётко сказать, что будет с кабелем 1.5 мм², если в течение часа по нему будет идти ток 24А. А я это проверил.
Электрики исходят из цифр, приведённых в ГОСТ в ПУЭ.
ГОСТ 31996-2012 «Кабели силовые с пластмассовой изоляцией…» содержит таблицу 19 «Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов».
Согласно этой таблице, допустимый ток для кабеля ВВГ 3×1.5 при прокладке на воздухе составляет 21А.
В ПУЭ 7 (Правила устройства электроустановок. Издание 7) есть таблица 1.3.4 «Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами».
Кабель ВВГ 3×1.5 правильно считать двухжильным, так как только по двум его жилам течёт ток в рабочем режиме. Согласно таблице, такой кабель выдерживает 23А при открытой прокладке и 18А при прокладке в трубе.
Для проведения эксперимента я подключил через пятиметровый отрезок кабеля ВВГ 3×1.5 ГОСТ Альфакабель (https://ammo1.livejournal.com/1148518.html) шесть тепловентиляторов, каждый из которых обеспечивал нагрузку 4 или 8 ампер.
Греем улицу. 🙂
Для контроля и измерения тока использовался измеритель мощности Atorch AT3010.
Петля кабеля была пропущена через отрезок гофротрубы.
На кабеле были закреплены три термопары (одна на оболочке кабеля, вторая непосредственно на жиле, третья в трубе между двух кабелей), подключенные к термометрам GM1312 и TM-902C.
Сначала я нагрузил кабель током 16А.
Через 30 минут температура стабилизировалась: на поверхности оболочки кабеля 34°, на жиле 33°, в гофротрубе с двумя участками кабеля под нагрузкой 42°.
Второй эксперимент — 24А. Это ток, который может проходить по кабелю до отключения автомата 16А (напомню, он может не отключаться час при превышении 1.45x, то есть до 23.2А).
Через 5 минут температура в гофре достигла 60°, через 20 минут она стабилизировалась на уровне 67° и осталась такой же и через 30 минут. Температуры на кабеле, лежащем на воздухе составили 49° и 46°.
Третий эксперимент — 31.3А. Это ток, который точно не стоит пускать через кабель 1.5 мм². 🙂
Через три минуты в гофре было 64°, через 5 минут 80°, через 10 минут 97°, через 15 минут 104°, через 20 минут 105° и температура стабилизировалась, — через 30 минут были всё те же 105° в гофре, 82° на поверхности кабеля, лежащего на воздухе, 68° на жиле.
В таблице 18 того же ГОСТ 31996-2012 указаны допустимые температуры нагрева токопроводящих жил кабелей.
Длительно допустимой считается температура 70°, предельной — 160°.
Я для себя могу сделать выводы, что 16А это лёгкий режим для кабеля 1.5 мм², при котором он почти не нагревается. 24А тяжёлый, но вполне рабочий режим. 31А экстремальный режим, при котором с кабелем ничего плохого не происходит (он не плавится, не горит, но конечно не должен работать в таком режиме). Получается, что кабель 1.5 мм² вполне можно защищать автоматом 16А с характеристикой «C» (но лучше конечно «B», чтобы он отключался быстрее при аварийной перегрузке).
Насколько это было возможно, я снял эксперимент на видео.
https://www.youtube.com/watch?v=v_JfqFwNBCU
Я лишь провёл эксперимент и не собираюсь спорить с электриками, ПУЭ и ГОСТом. Важные для меня выводы я из этого эксперимента сделал, а вы делайте выводы сами.
© 2020, Алексей Надёжин
Основная тема моего блога — техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья . Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.
Второй мой проект — lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей
Алюминиевые жилы проводов и кабелей
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Электромонтажные работы – сложное и ответственное мероприятие. Если Вашей квалификации достаточно, чтобы сделать электропроводку в квартире своими руками, пригодятся полезные советы. Если — нет, то воспользуйтесь услугами специалистов по электромонтажным работам . Итак, поговорим о выборе сечения проводов по току и мощности в деталях.
Расчет длины и максимальной нагрузки электропроводки
Правильный расчет сечения проводов по мощности и току – важное условие бесперебойной и безаварийной работы электросистемы. Сначала рассчитывают общую длину электропроводки. Первый способ — измерить расстояния между щитками, выключателями и розетками на электромонтажной схеме, умножая число на масштаб. Второй способ – определить длину по месту, где запроектирована электропроводка. Она включает в себя все провода, установочные и монтажные кабели вместе с креплениями, поддерживающими и защитными конструкциями. Каждый отрезок необходимо удлинить минимум на 1 см, с учетом соединений проводов.
Дальше рассчитывается общая нагрузка потребляемой электроэнергии. Это сумма номинальных мощностей всех электроприборов, которые будут работать в доме (*см. таблицу в конце статьи). Например, если на кухне в одно время включены электрочайник, электроплита, микроволновка, светильники, посудомоечная машина, суммируем мощности всех приборов и умножаем на 0,75 (коээфициент одновременности). Расчет нагрузки должен всегда иметь запас надежности и прочности. Запоминаем эту цифру для определения сечения жил проводов.
Самостоятельно определить потребляемый ток любого электроприбора поможет простая формула. Разделите потребляемую мощность (см. инструкцию к прибору) на напряжение в сети (220 В). К примеру, по паспорту мощность стиральной машины 2000 Вт; 2000/220 = максимальный ток во время работы не превысит 9,1А.
Другой вариант – воспользоваться рекомендациями ПУЭ (Правила устройства электроустановок), по которым стандартная квартирная электропроводка при длительной нагрузке 25А рассчитывается на максимальный ток потребления, выполняется медным проводом сечением 5мм 2 . По ПУЭ сечение жилы должно быть не менее 2,5мм 2 , что соответствует диаметру проводника 1,8 мм.
На такой ток устанавливается и защитный автомат на вводе проводов в квартиру для предотвращения аварий. В жилых зданиях используется однофазный ток напряжением 220 В. Подсчитанную общую нагрузку делим на величину напряжения (220 В) и получаем ток, который будет проходить через вводный кабель и автомат. Покупать автомат нужно с точными или близкими параметрами, с запасом по нагрузке тока.
Выбор кабеля для электропроводки в квартире
Для монтажа домашней электропроводки выбирают трехжильный кабель, один проводник идет на заземление. Жила – это токоведущая часть провода, может быть одно- или многопроволочной. Жилы имеют стандартные сечения, покрыты изолирующей полимерной или резиновой оболочкой, иногда с защитной х/б оплеткой сверху. Делают жилы провода из меди, алюминия или стали.
Наилучший вариант для новой электропроводки в квартире — медный провод. Это надежнее, долговечнее, электрические показатели меди лучше, чем у алюминия.
Что касается марки кабеля, чаще всего используется кабель ВВГ и ВВГнг – медные провода плоской формы, в двойной ПВХ изоляции («нг» говорит о негорючей изоляции провода). Предназначен для выполнения проводки внутри зданий, на открытом воздухе в земле при прокладке в тубах, работает при температуре окружающей среды от -50 до +50°С. Срок службы до 30 лет. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 35,0 мм 2 . (Обратите внимание, что при обозначении АВВГ, жилы в проводе алюминиевые.)
Аналог российскому ВВГ — кабель NYM, круглой формы, с медными жилами и негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения практически те же. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 4,0 мм 2 .
Круглый кабель удобнее прокладывать сквозь стены — отверстия сверлятся немного больше диаметра кабеля. Для внутренней проводки более удобен плоский кабель ВВГ.
Легкие и дешевые алюминиевые провода незаменимы при прокладке воздушной электропроводки, при грамотном соединении имеют длительный срок службы, поскольку алюминий почти не окисляется. С алюминиевой электропроводкой можно столкнуться при ремонте в старых домах. Когда требуется подключить дополнительные энергоемкие приборы, определяют по сечению или диаметру жил проводов способность проводки из алюминия выдержать большую нагрузку (см. таблицу).
Длительно допустимые токовые нагрузки на алюминиевые провода в разы меньше, чем при использовании медных проводов и кабелей аналогичного сечения.
Провод медный 4 квадрата, какою нагрузку выдерживает?
Что можно подключить из мощных потребителей на провод сечением 4 миллиметра?
Хотя вопрос и стоит об нагрузке в 4 квадрата медного кабеля, но всё-таки необходимо понимать, что исполнение проводов бывает различное, соответственно и нагрузка будет разной, по этой причине при расчёте пользуйтесь не только полученной цифрой, но и сравнивайте технические характеристики по определённой маркировке кабеля.
Итак ниже приведены параметры для кабеля на 4 квадрата по маркировке (речь идёт о 3-х жильных кабелях):
Допустимый ток кабеля NYM 3*4: 34 ампер.
Номинальное переменное напряжение: 500 Вольт.
Активное сопротивление жилы: 4,65 Ом в километре.
Кабель ВБбШв 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель бронированный ВБбШвнг 3*4
Допустимый ток при прокладке на воздухе — 36 Ампер.
Допустимый ток при прокладке в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабеля силовой ВБбШвнг-LS 3*4
Допустимый ток при прокладке кабеля на воздухе — 36 Ампер.
Допустимый ток при прокладке бронированного кабеля в земле — 47 Ампер.
Допустимый ток короткого замыкания — 0,43 Ампер.
Активное сопротивление жилы — 4,65 Ом на километр.
Кабель ВВГ-П 3х4
Допустимый ток при прокладке ВВГ-П 3х4 на воздухе: 36 Ампер.
Допустимый ток при прокладке в земле: 47 Ампер.
Допустимый ток односекундного короткого замыкания: 430 Ампер.
Активное сопротивление жилы: 4.65 Ом на километр.
Последний кабель, ВВГ-П 3х4, в основном и применяется при прокладке электрических проводов в квартире, считается самым распространённым и оптимальным в потреблении для домашних нужд.
Для начала, чтобы не опытные мастера и строители понимали в чём дело, и почему ответ на этот вопрос не однозначный, давайте разберём условие вопроса, а именно: что такое медный провод (какие они бывают) и что такое «4 квадрата».
1) Медные провода — исполнение этих проводов очень различное, так под одним сечением могут выпускаться разные провода, общее между ними только в том, что они медные и имеют одинаковый диаметр, а вот сам кабель и изоляция различаются. Кабеля могут быть как сплошные, так и многожильные, а изоляция выполнена из различных материалов. По маркировке это кабеля: ВВГ, NYM, ПВС, ШВВП, КГ, ВББШв, ПБПП, ПУНП, ППВ, ПВ1, ПВ3 и прочие.
2) «4 квадрата» — так в электрике обозначают провод диаметром в 4 миллиметра, имеется ввиду одна жила. В одном кабеле могут находится от одной и более жил, также они могут различаться по сечению.
3) Надо знать нагрузку, которая измеряется в Амперах. Данный показатель может иметь градацию в зависимости от условий эксплуатации кабеля.
Итак, для каждого кабеля будет своё значение нагрузки. При строительстве квартир в последнее время всё больше используют кабеля ВВГ, с них и начнём.
ВВГ
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 44 Ампера (минимум 36, перегрузка 40)
- 3 жилы основные — 37 Ампер (минимум 33, перегрузка 40)
- 4 жилы основные — 34 Ампера (минимум 33, перегрузка 37)
Если кабель проложен в земле, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 47 Ампер (перегрузка 54)
- 3 жилы основные — 47 Ампер (перегрузка 54)
- 4 жилы основные — 43 Ампера (перегрузка 50)
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 41 Ампер (перегрузка 60)
- 3 жилы — 35 Ампер (перегрузка 49)
ПВС
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 1 жила — 38 Ампер допустимый
ШВВП
Если кабель проложен по воздуху, то допустимый ток нагрузки будет равен следующим показаниям, при условии, что сечение провода 4 квадрата:
- 2 жилы основные — 32 Ампера
Остальные кабеля менее распространены при строительстве.
Из описания видно, что влияние на нагрузку происходит не только от того, как исполнен кабель, но также и где он проложен. Также в описании напряжения приведены при использовании тока в 220 Вольт, для тока в 380 Вольт нагрузка на кабель будет другая!
________________ ________
Остаётся открытым вопрос о том, какие потребители можно вешать на медный кабель с сечением в 4 квадрата. По характеристикам, вне зависимости от исполнения и способа прокладки, данный кабель в 4 миллиметра выдерживает мощность всех бытовых приборов (они все исполнены под нагрузку не более 32 Ампер). В число бытовых приборов также можно включить и электроплиту, большинство которых (имеется ввиду бытовые, не профессиональные!) рассчитаны также на нагрузку до 32 Ампер.
Выбор сечения кабеля — stroka.by
Кабель обычно состоит из 2-4 жил. Сечение (точнее, площадь поперечного сечения) жилы определяется ее диаметром.
Напомним: площадь круга S = 0,78d², где d — диаметр круга. Исходя из практических соображений, при малых значениях силы тока сечение медной жилы берут не менее 1 мм², а алюминиевой — 2 мм².
При достаточно больших токах сечение провода выбирают по подключаемой мощности.
Обычно исходят из расчета мощности, что нагрузка величиной 1 кВт требует 1,57 мм² сечения жилы. Отсюда следуют приближенные значения сечений провода, которых следует придерживаться при выборе его диаметра. Для алюминиевых проводов это 5 А на 1 мм²., для медных — 8 А на 1 мм². Проще говоря, если у вас стоит проточный водонагреватель на 5 кВт, то подключать его надо проводом, рассчитанным не менее чем на 25 А, и для медного провода сечение должно быть не менее 3,2 мм². Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; 6 мм² и т. д.) для алюминиевых проводов сечение выбирают на ступень выше, чем для медных, так как их проводимость составляет примерно 62% от проводимости медных.
Например, если по расчетам нагрузки для меди нужна величина сечения 2,5 мм², то для алюминия следует брать 4 мм², если же для меди нужно 4 мм², то для алюминия — 6 мм² и т. д.
А вообще кабель лучше выбирать большего поперечного сечения, чем требуется, — вдруг вы захотите подключить еще что-нибудь? Кроме того, необходимо проверить, согласуется ли сечение проводов с максимальной фактической нагрузкой, а также с током защитных предохранителей или автоматического выключателя, которые обычно находятся рядом со счетчиком.
В таблицах приводится зависимость сечения кабеля, проводов и автомобильных гибких многожильных проводников в зависимости от силы тока и мощности нагрузки.
Таблица выбора сечения кабеля при прокладке проводов открыто и в трубе
Сечение | Проложенные открыто | Проложенные в трубе | ||||||||||
Медь | Алюминий | Медь | Алюминий | |||||||||
Ток | Мощность, кВт | Ток | Мощность, кВт | Ток | Мощность, кВт | Ток | Мощность, кВт | |||||
А | 220в | 380в | А | 220в | 380в | А | 220в | 380в | А | 220в | 380в | |
0,5 | 11 | 2,4 |
|
|
|
|
|
|
|
|
|
|
0,75 | 15 | 3,3 |
|
|
|
|
|
|
|
|
|
|
1,0 | 17 | 3,7 | 6,4 |
|
|
| 14 | 3,0 | 5,3 |
|
|
|
1,5 | 23 | 5,0 | 8,7 |
|
|
| 15 | 3,3 | 5,7 |
|
|
|
2,0 | 26 | 5,7 | 9,8 | 21 | 4,6 | 7,9 | 19 | 4,1 | 7,2 | 14,0 | 3,0 | 5,3 |
2,5 | 30 | 6,6 | 11,0 | 24 | 5,2 | 9,1 | 21 | 4,6 | 7,9 | 16,0 | 3,5 | 6,0 |
4,0 | 41 | 9,0 | 15,0 | 32 | 7,0 | 12,0 | 27 | 5,9 | 10,0 | 21,0 | 4,6 | 7,9 |
6,0 | 50 | 11,0 | 19,0 | 39 | 8,5 | 14,0 | 34 | 7,4 | 12,0 | 26,0 | 5,7 | 9,8 |
10,0 | 80 | 17,0 | 30,0 | 60 | 13,0 | 22,0 | 50 | 11,0 | 19,0 | 38,0 | 8,3 | 14,0 |
16,0 | 100 | 22,0 | 38,0 | 75 | 16,0 | 28,0 | 80 | 17,0 | 30,0 | 55,0 | 12,0 | 20,0 |
25,0 | 140 | 30,0 | 53,0 | 105 | 23,0 | 39,0 | 100 | 22,0 | 38,0 | 65,0 | 14,0 | 24,0 |
35,0 | 170 | 37,0 | 64,0 | 130 | 28,0 | 49,0 | 135 | 29,0 | 51,0 | 75,0 | 16,0 | 28,0 |
Выбор сечения одиночного проводника гибкого многожильного автомобильного провода:
Номинальное сечение провода, мм² | Сила тока в одиночном проводе, А при длительной нагрузке и при температуре окружающей среды, оС | |||
20 оС | 30 оС | 50 оС | 80 оС | |
0,5 | 17,5 | 16,5 | 14,0 | 9,5 |
0,75 | 22,5 | 21,5 | 17,5 | 12,5 |
1,0 | 26,5 | 25,0 | 21,5 | 15,0 |
1,5 | 33,5 | 32,0 | 27,0 | 19,0 |
2,5 | 45,5 | 43,5 | 37,5 | 26,0 |
4,0 | 61,5 | 58,5 | 50,0 | 35,5 |
6,0 | 80,5 | 77,0 | 66,0 | 47,0 |
16,0 | 149,0 | 142,5 | 122,0 | 88,5 |
Примечание: при прокладке проводов сечением 0,5 — 4,0 мм² в жгутах, в
поперечном сечении которых по трассе содержится от двух до семи проводов, сила
допустимого тока в проводе составляет 0,55 от силы тока в одиночном проводе
согласно таблице, а при наличии 8-19 проводов — 0,38 от силы тока в одиночном
проводе.
Какой ток выдерживает провод 4 квадрата медь — MOREREMONTA
Когда электрический ток протекает по кабелю, часть энергии теряется. Она уходит на нагрев проводников из-за их сопротивления, с уменьшением которого возрастает величина передаваемой мощности и допустимый ток для медных проводов. Наиболее приемлемым проводником на практике является медь, которая имеет небольшое электрическое сопротивление, устраивает потребителей по стоимости и выпускается в широком ассортименте.
Следующим металлом с хорошей проводимостью является алюминий. Он дешевле меди, но более ломкий и деформируется в местах соединений. Прежде внутридомовые отечественные сети были проложены алюминиевыми проводами. Их прятали под штукатурку и надолго забывали об электропроводке. Электроэнергия преимущественно уходила на освещение, и провода легко выдерживали нагрузку.
С развитием техники появилось множество электроприборов, которые стали незаменимы в быту и потребовали большего количества электричества. Потребляемая мощность возросла и проводка перестала с ней справляться. Теперь стало немыслимо делать электроснабжение квартиры или дома без расчета электропроводки по мощности. Провода и кабели выбираются так, чтобы не было лишних затрат, а они полностью справлялись со всеми нагрузками в доме.
Причина нагрева электропроводки
Проходящий электрический ток вызывает нагрев проводника. При повышенной температуре металл быстро окисляется, а изоляция начинает плавиться при температуре от 65 0 С. Чем чаще она нагревается, тем быстрее выходит из строя. По этой причине провода выбирают по допустимому току, при котором не происходит их перегрев.
Площадь сечения проводки
По форме провод выполняется в виде круга, квадрата, прямоугольника или треугольника. У квартирной проводки сечение преимущественно круглое. Шина медная устанавливается обычно в распределительном шкафу и бывает прямоугольной или квадратной.
Площади поперечных сечений жил определяются по основным размерам, замеряемым штангенциркулем:
- круг — S = πd 2 / 4;
- квадрат — S = a 2 ;
- прямоугольник — S = a * b;
- треугольник — πr 2 / 3.
В расчетах приняты следующие обозначения:
- r — радиус;
- d — диаметр;
- b, a — ширина и длина сечения;
- π = 3,14.
Расчет мощности в проводке
Мощность, выделяющаяся в жилах кабеля при его эксплуатации, определяется по формуле: P = In 2 Rn,
где In — нагрузочный ток, А; R — сопротивление, Ом; n — количество проводников.
Формула подходит при расчете одной нагрузки. Если к кабелю их подключено несколько, количество тепла рассчитывается отдельно для каждого потребителя энергии, а затем результаты суммируются.
Допустимый ток для медных многожильных проводов также рассчитывается через поперечное сечение. Для этого необходимо распушить конец, замерить диаметр одной из проволочек, посчитать площадь и умножить на их количество в проводе.
Сечение проводов для разных условий эксплуатации
Сечения проводов удобно измерять в квадратных миллиметрах. Если грубо оценивать допустимый ток, мм2 медного провода пропускает через себя 10 А, при этом не перегреваясь.
В кабеле соседние провода греют друг друга, поэтому для него надо выбирать толщину жилы по таблицам или с поправкой. Кроме того, размеры берут с небольшим запасом в сторону увеличения, а после выбирают из стандартного ряда.
Проводка может быть открытой и скрытой. В первом варианте она прокладывается снаружи по поверхностям, в трубах или в кабель-каналах. Скрытая проходит под штукатуркой, в каналах или трубах внутри конструкций. Здесь условия работы более жесткие, поскольку в закрытых пространствах без доступа воздуха кабель нагревается сильней.
Для разных условий эксплуатации вводятся коэффициенты поправки, на которые следует умножать расчетный длительно допустимый ток в зависимости от следующих факторов:
- одножильный кабель в трубе длиной более 10 м: I = In х 0,94;
- три одножильных кабеля в одной трубе: I = In х 0,9;
- прокладка в воде с защитным покрытием типа Кл: I = In х 1,3;
- четырехжильный кабель равного сечения: I = In х 0,93.
Пример
При нагрузке в 5 кВт и напряжении 220 В сила тока через медный провод составит 5 х 1000 / 220 = 22,7 А. Его сечение составит 22,7 / 10 = 2,27 мм 2 . Этот размер обеспечит допустимый ток для медных проводов по нагреву. Поэтому здесь следует взять небольшой запас 15 %. В результате сечение составит S = 2,27 + 2,27 х 15 / 100 = 2,61 мм 2 . Теперь к этому размеру следует подобрать стандартное сечение провода, которое составит 3 мм.
Рассеивание тепла при работе кабеля
Проводник не может разогреваться от проходящего тока бесконечно долго. Одновременно он отдает тепло окружающей среде, количество которого зависит от разности температуры между ними. В определенный момент наступает равновесное состояние и температура проводника устанавливается постоянной.
Важно! При правильно подобранной проводке потери на нагрев снижаются. Следует помнить, что за нерациональный расход электроэнергии (когда провода перегреваются) также приходится платить. С одной стороны плата взимается за лишний расход по счетчику, а с другой — за замену кабеля.
Выбор сечения провода
Для типовой квартиры электрики особенно не задумываются о том, какие сечения проводки выбрать. В большинстве случаев используют такие:
- вводной кабель — 4-6 мм 2 ;
- розетки — 2,5 мм 2 ;
- основное освещение — 1,5 мм 2 .
Подобная система вполне справляется с нагрузками, если нет мощных электроприборов, к которым порой надо вести отдельное питание.
Отлично подходит для того, найти допустимый ток медного провода, таблица из справочника. В ней также приведены данные расчета при использовании алюминия.
Основой для выбора проводки является мощность потребителей. Если суммарная мощность в линиях от главного ввода P = 7,4 кВт при U = 220 В, допустимый ток для медных проводов составит по таблице 34 А, а сечение — 6 мм 2 (закрытая прокладка).
Кратковременные режимы работы
Максимально допустимый кратковременный ток для медных проводов при режимах работы с длительностью циклов до 10 мин и рабочими периодами между ними не более 4 мин приводится к длительному режиму работы, если сечение не превышает 6 мм 2 . При сечении выше 6 мм 2 : Iдоп = In∙0,875/√Тп.в.,
где Тп.в — отношение длительности рабочего периода к продолжительности цикла.
Отключение питания при перегрузках и коротких замыканиях определяется техническими характеристиками применяемых защитных автоматов. Ниже приведена схема небольшого щита управления квартиры. Питание от счетчика поступает на вводной автомат DP MCB мощностью 63 А, который защищает проводку до автоматов отдельных линий мощностью 10 А, 16 А и 20 А.
Важно! Пороги срабатывания автоматов должны быть меньше максимально допустимого тока проводки и выше нагрузочного тока. В таком случае каждая линия будет надежно защищена.
Как правильно выбрать вводной провод в квартиру?
Величина номинального тока на кабеле ввода в квартиру зависит от того, сколько подключено потребителей. В таблице приведены необходимые приборы и их мощность.
Электроприбор | Номинальная мощность, кВт |
Телевизор | 0,18 |
Бойлер | 2-6 |
Холодильник | 0,2-0,3 |
Духовой шкаф | 2-5 |
Пылесос | 0,65-1 |
Электрочайник | 1,2-2 |
Утюг | 1,7-2,3 |
Микроволновка | 0,8-2 |
Компьютер | 0,3-1 |
Стиральная машина | 2,5-3,5 |
Система освещения | 0,5 |
Всего | 12,03-23,78 |
Силу тока по известной мощности можно найти из выражения:
I = P∙Kи/(U∙cos φ), где Kи = 0,75 — коэффициент одновременности.
Для большинства электроприборов, являющихся активной нагрузкой, коэффициент мощности cos φ = 1. У люминесцентных ламп, электродвигателей пылесоса, стиральной машины и др. он меньше 1 и его необходимо учитывать.
Длительно допустимый ток для приборов, приведенных в таблице, составит I = 41 — 81 А. Величина получается довольно внушительной. Всегда следует хорошенько подумать, когда приобретаешь новый электроприбор, потянет ли его квартирная сеть. По таблице для открытой проводки сечение входного провода составит 4-10 мм 2 . Здесь еще надо учитывать, как квартирная нагрузка повлияет на общедомовую. Возможно, что ЖЭК не позволит подключить столько электроприборов к стояку подъезда, где через распределительные шкафы под каждую фазу и нейтраль проходит шина (медная или алюминиевая). Их просто не потянет электросчетчик, который обычно устанавливается в щите на лестничной площадке. Кроме того, плата за перерасход нормы электроэнергии вырастет до внушительных размеров из-за повышающих коэффициентов.
Если проводку делать для частного дома, то здесь надо учитывать мощность отводящего провода от главной сети. Обычно используемого алюминиевого провода СИП-4 сечением 12 мм 2 может и не хватить для большой нагрузки.
Выбор проводки для отдельных групп потребителей
После того как выбран кабель для подключения к сети и для него подобран защищающий от перегрузок и коротких замыканий автомат ввода, необходимо подобрать провода для каждой группы потребителей.
Нагрузка разделяется на осветительную и силовую. Самым мощным потребителем в доме является кухня, где устанавливаются электроплита, стиральная и посудомоечная машины, холодильник, микроволновка и другие электроприборы.
Для каждой розетки выбираются провода на 2,5 мм 2 . По таблице для скрытой проводки он пропустит 21 А. Схема снабжения обычно радиальная — от распределительной коробки. Поэтому к коробке должны подходить провода на 4 мм 2 . Если розетки соединены шлейфом, следует учитывать, что сечению 2,5 мм 2 соответствует мощность 4,6 кВт. Поэтому суммарная нагрузка на них не должна ее превышать. Здесь есть один недостаток: при выходе из строя одной розетки, остальные также могут оказаться неработоспособными.
На бойлер, электроплиту, кондиционер и другие мощные нагрузки целесообразно подключать отдельный провод с автоматом. В ванную комнату также делается отдельный ввод с автоматом и УЗО.
На освещение идет провод на 1,5 мм 2 . Сейчас многие применяют основное и дополнительное освещение, где может потребоваться большее сечение.
Как рассчитать трехфазную проводку?
На расчет допустимого сечения кабеля влияет тип сети. Если мощность потребления одинакова, допустимые токовые нагрузки на жилы кабеля для трехфазной сети будут меньше, чем для однофазной.
Для питания трехжильного кабеля при U = 380 В применяется формула:
Коэффициент мощности можно найти в характеристиках электроприборов или он равен 1, если нагрузка активная. Максимально допустимый ток для медных проводов, а также алюминиевых при трехфазном напряжении указывается в таблицах.
Заключение
Для предупреждения перегрева проводников при длительной нагрузке следует правильно рассчитать поперечное сечение жил, от которого зависит допустимый ток для медных проводов. Если мощности проводника будет недостаточно, кабель преждевременно выйдет из строя.
Электромонтажные работы – сложное и ответственное мероприятие. Если Вашей квалификации достаточно, чтобы сделать электропроводку в квартире своими руками, пригодятся полезные советы. Если — нет, то воспользуйтесь услугами специалистов по электромонтажным работам . Итак, поговорим о выборе сечения проводов по току и мощности в деталях.
Расчет длины и максимальной нагрузки электропроводки
Правильный расчет сечения проводов по мощности и току – важное условие бесперебойной и безаварийной работы электросистемы. Сначала рассчитывают общую длину электропроводки. Первый способ — измерить расстояния между щитками, выключателями и розетками на электромонтажной схеме, умножая число на масштаб. Второй способ – определить длину по месту, где запроектирована электропроводка. Она включает в себя все провода, установочные и монтажные кабели вместе с креплениями, поддерживающими и защитными конструкциями. Каждый отрезок необходимо удлинить минимум на 1 см, с учетом соединений проводов.
Дальше рассчитывается общая нагрузка потребляемой электроэнергии. Это сумма номинальных мощностей всех электроприборов, которые будут работать в доме (*см. таблицу в конце статьи). Например, если на кухне в одно время включены электрочайник, электроплита, микроволновка, светильники, посудомоечная машина, суммируем мощности всех приборов и умножаем на 0,75 (коээфициент одновременности). Расчет нагрузки должен всегда иметь запас надежности и прочности. Запоминаем эту цифру для определения сечения жил проводов.
Самостоятельно определить потребляемый ток любого электроприбора поможет простая формула. Разделите потребляемую мощность (см. инструкцию к прибору) на напряжение в сети (220 В). К примеру, по паспорту мощность стиральной машины 2000 Вт; 2000/220 = максимальный ток во время работы не превысит 9,1А.
Другой вариант – воспользоваться рекомендациями ПУЭ (Правила устройства электроустановок), по которым стандартная квартирная электропроводка при длительной нагрузке 25А рассчитывается на максимальный ток потребления, выполняется медным проводом сечением 5мм 2 . По ПУЭ сечение жилы должно быть не менее 2,5мм 2 , что соответствует диаметру проводника 1,8 мм.
На такой ток устанавливается и защитный автомат на вводе проводов в квартиру для предотвращения аварий. В жилых зданиях используется однофазный ток напряжением 220 В. Подсчитанную общую нагрузку делим на величину напряжения (220 В) и получаем ток, который будет проходить через вводный кабель и автомат. Покупать автомат нужно с точными или близкими параметрами, с запасом по нагрузке тока.
Выбор кабеля для электропроводки в квартире
Для монтажа домашней электропроводки выбирают трехжильный кабель, один проводник идет на заземление. Жила – это токоведущая часть провода, может быть одно- или многопроволочной. Жилы имеют стандартные сечения, покрыты изолирующей полимерной или резиновой оболочкой, иногда с защитной х/б оплеткой сверху. Делают жилы провода из меди, алюминия или стали.
Наилучший вариант для новой электропроводки в квартире — медный провод. Это надежнее, долговечнее, электрические показатели меди лучше, чем у алюминия.
Что касается марки кабеля, чаще всего используется кабель ВВГ и ВВГнг – медные провода плоской формы, в двойной ПВХ изоляции («нг» говорит о негорючей изоляции провода). Предназначен для выполнения проводки внутри зданий, на открытом воздухе в земле при прокладке в тубах, работает при температуре окружающей среды от -50 до +50°С. Срок службы до 30 лет. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 35,0 мм 2 . (Обратите внимание, что при обозначении АВВГ, жилы в проводе алюминиевые.)
Аналог российскому ВВГ — кабель NYM, круглой формы, с медными жилами и негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения практически те же. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 4,0 мм 2 .
Круглый кабель удобнее прокладывать сквозь стены — отверстия сверлятся немного больше диаметра кабеля. Для внутренней проводки более удобен плоский кабель ВВГ.
Легкие и дешевые алюминиевые провода незаменимы при прокладке воздушной электропроводки, при грамотном соединении имеют длительный срок службы, поскольку алюминий почти не окисляется. С алюминиевой электропроводкой можно столкнуться при ремонте в старых домах. Когда требуется подключить дополнительные энергоемкие приборы, определяют по сечению или диаметру жил проводов способность проводки из алюминия выдержать большую нагрузку (см. таблицу).
Длительно допустимые токовые нагрузки на алюминиевые провода в разы меньше, чем при использовании медных проводов и кабелей аналогичного сечения.
— электроснабжение объектов энергетики, проектные, электромонтажные и пусконаладочные работы под ключ
+7 (342) 202-77-09 Заказать звонок
Выбор мощности, тока и сечения проводов и кабелей
Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки ( открытой проводки) на сечение провода:
- для медного провода 10 ампер на миллиметр квадратный,
- для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.
При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности.
Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.
В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.
Таблица текущей пропускной способности
| Расчет поперечного сечения кабеля
Допустимая нагрузка по току: таблицы
(Выдержка из таблиц VDE 0298-4 06/13: 11, 17, 18, 21, 26 и 27)
Допустимая нагрузка по току, кабели с номинальным напряжением до 1000 В и термостойкими кабелями VDE 0298-4 06/13 таблица 11, столбец 2 и 5 | ||
---|---|---|
столбец 2 | столбик 5 | |
способ прокладки | в воздухе | на поверхности или на поверхности |
монопроводники — с резиновой изоляцией | Многожильные кабели (кроме домашних или переносных устройств) — с резиновой изоляцией — ПВХ изолированный — термостойкий | |
Количество заряженных проводников | 1 | 2 или 3 |
Номинальное сечение | Capa город (Ампер) | |
0,75 мм 2 | 15A | 12A |
1,00 мм 2 | 19A | 15A |
1,50 мм 2 | 24A | 18A |
2,50 мм 2 | 32A | 26A |
4,00 мм 2 | 42A | 34A |
6,00 мм 2 | 54A | 44A |
10,00 мм 2 | 73A | 61A |
16,00 мм 2 | 98A | 82A |
25,00 мм 2 | 129A | 108A |
35,00 мм 2 | 158A | 135A |
50,00 мм 2 | 198A | 168A |
70,00 мм 2 | 245A | 207A |
95,00 мм 2 | 292A | 250A |
120,00 мм 2 | 344A | 292A |
150,00 мм 2 | 391A | 335A |
185,00 мм 2 | 448A | 382A |
240,00 мм 2 | 528A | 453A |
300 2 | 608A | 523A |
Максимальный ток кабелей при изменении температуры окружающей среды VDE 0298-4 06/13, таблица 17, столбец 4 1 ) | |
---|---|
Температура окружающей среды | Коэффициент |
10 ° C | 1,22 |
15 ° C | 1,17 |
20 ° C | 1,12 90 018 |
25 ° C | 1,06 |
30 ° C | 1,00 |
35 ° C | 0,94 |
40 ° C | 0,87 |
45 ° C | 0,79 |
50 ° C | 0,71 |
55 ° C | 0,61 |
60 ° C | 0,50 |
65 ° C | 0,35 |
1) для кабелей с рабочей температурой макс.70 ° C на проводнике
Допустимая нагрузка на многожильные кабели номинальным сечением до 10 мм 2 VDE 0298-4 06/13 таблица 26. При установке в под открытым небом. | |
---|---|
Число нагруженных сердечников | Коэффициент |
5 | 0,75 |
7 | 0,65 |
10 | 0,55 |
14 | 0,50 |
19 | 0,45 |
24 | 0,40 |
40 | 0,35 |
61 | 0,30 |
Максимальный ток кабелей для разделения температуры окружающей среды для термостойких кабелей VDE 0298-4 06/13 таблица 18, столбец 3-6 | ||||
---|---|---|---|---|
столбец 3 | столбец 4 | столбец 5 | колонка 6 | |
zulässige Betriebstemperatur | ||||
90 ° C | 110 ° C | 135 ° C | 180 ° C | |
окружающая среда t температура | коэффициенты преобразования, применяемые к емкости термостойких кабелей в таблице 11, столбец 2 и 5 | |||
до 50 ° C | 1,00 | 1,00 | 1,00 | 1,00 |
55 ° C | 0,94 | 1,00 | 1,00 | 1,00 |
60 ° C | 0,87 | 1,00 | 1,00 | 1,00 |
65 ° C | 0,79 | 1,00 | 1,00 | 1,00 |
70 ° C | 0,71 | 1,00 | 1,00 | 1,00 |
75 ° C | 0,61 | 1,00 | 1,00 | 1,00 |
80 ° C | 0 , 50 | 1,00 | 1,00 | 1,00 |
85 ° C | 0,35 | 0,91 | 1,00 | 1,00 | 90 ° C | —— | 0,82 | 1,00 | 1,00 |
95 ° C | —— | 0,71 | 1, 00 | 1,00 |
100 ° C | —— | 0,58 | 0,94 | 1,00 |
105 ° C | —— | 0,41 | 0,87 | 1,00 |
110 ° C | —— | —— | 0,79 | 1,00 |
115 ° C | —— | —— | 0,71 | 1,00 |
120 ° C | —— | —— | 0 , 61 | 1,00 |
125 ° C | —— | —— | 0,50 | 1,00 |
130 ° C | — — | —— | 0,35 | 1,00 |
135 ° C | — — | —— | —— | 1,00 |
140 ° C | —— | —— | —— | 1,00 |
145 ° C | —— | —— | —— | 1,00 |
150 ° C | — — | —— | —— | 1,00 |
155 ° C | —— | —— | —— | 0,91 |
160 ° C | —— | —— | —— | 0,82 |
165 ° C | —- — | —— | —— | 0,71 |
170 ° C | —— | —— | —— | 0,58 |
175 ° C | —— | —— | —— | 0,41 |
Текущий Емкость накопления кабелей на стенах, в трубах и трубопроводах, на полу и на потолке VDE 0298-4 06/13 таблица 21 | |
---|---|
No.многожильных кабелей | Коэффициент |
1 | 1,00 |
2 | 0,80 |
3 | 0,70 |
4 | 0,65 |
5 | 0,60 |
6 | 0,57 |
7 | 0,54 |
8 | 0,52 |
9 | 0,50 |
10 | 0,48 |
12 | 0,45 |
14 | 0,43 |
16 | 0,41 |
18 | 0,39 |
20 | 0,38 |
Максимально допустимая токовая нагрузка в соотв.согласно VDE 0891, часть 1, пункт 7 необходимо учитывать при применении изолированных кабелей в телекоммуникационных системах и устройствах обработки данных.
Допустимая нагрузка на кабели для намотанных кабелей VDE 0298-4 06/13 таблица 27 | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
№ слоев на одном барабане | 1 | 2 | 3 | 4 | 5 |
коэффициенты пересчета | 0,80 | 0,61 | 0,49 | 0,42 | 0, 38 |
Примечание : для спиральной намотки действителен коэффициент преобразования 0,80 |
1, 1.5, 2.5, 4, 6 квадратных проводов
Насколько 1, 1,5, 2,5, 4, 6 квадратных проводов могут нагружать кВт? №
При покупке электропровода многие спросят о нагрузке проводов с разным сечением. Есть 1 квадратный провод, 1,5 квадратных провода, 2,5 квадратных провода, 4 квадратных провода, 6 квадратных проводов и так далее. Ниже приводится краткое описание того, сколько ватт могут быть нагружены этими проводами.
1 квадратная линия: сечение 1 квадратный миллиметр проволоки
Если исходить из формулы: площадь = 2 * 3.14 радиуса
Итак, 1 квадратная линия составляет примерно = 1,13 мм
Сколько ватт может нагружать один квадратный провод или один квадратный провод?
Электрик обычно использует «формулу»: если длина медного провода, площадь поперечного сечения на квадратный миллиметр может безопасно проходить через номинальный ток 4-5 А; 220В в однофазной цепи, мощность на 1кВт, ток около 4,5А; в трехфазной симметричной схеме 380В, мощность на 1кВт, ток около 2А. Приведенные выше значения могут быть очень близки к рассчитанным по формуле физических расчетов.Поэтому, чтобы избежать этих «утомительных» формул, мы должны помнить об этих вещах.
Тогда согласно этому алгоритму мы знаем: медный провод на 1 квадратный миллиметр площади, если 220 В используется в однофазной цепи, он может безопасно пропускать ток нагрузки через 1 кВт; при использовании в цепи трехфазной сбалансированной нагрузки (например, двигателя) может выдерживать нагрузку по току на 2,5 кВт.
Сколько ватт могут нагружать два и 1,5 квадратных провода?
Если линия электропередачи представляет собой линию из медного провода, максимально допустимый рабочий ток составляет 20А или 4400 Вт; два — скрытая стальная гильза, сила тока 16А, мощность 3520 Вт; тройка скрытая ПВХ, ток 14А, потом мощность 3000 Вт.
Сколько ватт могут нагружать три и 2,5 квадратных провода?
2,5 квадратный провод Cheng, сколько киловатт электроэнергии, положения национального стандарта GB4706.1-1992 / 1998 значение тока нагрузки провода, медный провод 2,5 мм 16A 25A примерно до 5500 Вт, провод с алюминиевым сердечником 2,5 мм 13A ~ 20A около 4400 Вт 220 В переменного тока длительное время напряжение не превышает 10 А, стандартное время не более 15 А безопасно.
сколько ватт может потреблять кабель 2,5 мм?
Провод БВ 2,5 квадратный, проводка ВЛ на 20 градусов, питание 220 Вольт может быть до 4.4KW.
1 квадратная линия = 8A, 8A × 2,5 квадрат = 20 ампер, по формуле: P = U × I, 220V × 20A = 4,4 кВт
Таким образом, можно использовать провод 2,5 квадрата BV с максимальной мощностью 4,4 кВт.
Сколько ватт могут нагрузить четыре и четыре квадратных провода?
Однофазный источник питания 1 кВт составляет около 4,5 А, а 8 кВт — около 36 А. Пропускная способность 4 квадратных проводов (одиночный пластиковый провод) составляет около 30 А, некоторых небольших, 6 квадратных линий (мощность одного прохода). Вы должны изменить стол и ворота. Не используйте такую большую линейку мощности, даже самую маленькую 4KW.4 квадратных провода Cheng по тому, сколько киловатт мощности зависит от вашей домашней мощности 220 В или заводской мощности 380 В, если 4 квадратных провода 220 могут нагружать от 6 до 8 кВт.
Сколько ватт могут нагрузить пять и шесть квадратных проводов?
Квадратный провод 6 не может быть напрямую связан с тем, сколько киловатт линии электропередачи и мощность передачи. В общем, для кондиционирования 6 квадратных квадратов более чем достаточно. Для электроснабжения на стройплощадке обычно используется кабель 10х6 + 1х4. Что касается силы тока, который должен выдерживать, этот кабель обычно управляется воздушным выключателем 63A, согласно моему опыту в строительстве.Алюминиевый провод 6 квадратных метров может нагружать 6 кВт медного провода 6 квадратных метров для нагрузки 10 кВт.
В качестве первоклассного китайского предприятия по производству кабельных проводов и кабелей SANHENG, в основном производство силовых кабелей, кабелей управления, кабеля с ПВХ-изоляцией, строительного провода, кабелей с ПВХ-изоляцией и оболочкой, резиновых кабелей, воздушных кабелей, неизолированных проводов 8-й серии. можно разделить на более чем 50 разновидностей, разделенных на 1000 спецификаций.
Вся продукция сертифицирована обязательной сертификацией Китая, сертификацией BV, сертификатом SONCAP Нигерии, лицензией на промышленное производство в Китае и другими национальными сертификатами.У нас также есть возможность производить продукцию, соответствующую международным стандартам, таким как IEC, CE, RoHS и так далее.
Henan Sanheng Cable Co., Ltd, основанная в 2000 году, уже почти 20 лет является одним из ведущих производителей проводов и кабелей в китайской кабельной промышленности. Компания имеет более 5 производственных линий .
Производственный кабель можно разделить на более чем 50 разновидностей и 1000 спецификаций. Все продукты прошли национальную сертификацию, такую как обязательная сертификация в Китае, сертификация bv, нигерийский сертификат SONCAP, национальная промышленная сертификация Китая и т. Д. Китайская национальная лицензия на промышленное производство и т. Д. Он также имеет возможность производить продукцию, соответствующую международным стандартам, таким как IEC, CE, RoHS и т. Д.
Если вы хотите купить провода и кабели, вы можете спросить у сотрудников службы поддержки клиентов и мы свяжемся с вами как можно скорее.
Алюминиевый кабель с ПВХ изоляцией
Проводник: Алюминиевый проводник класса 1/2 (сплошной)
Изоляция: компаунд ПВХ
Цвет изоляции: красный, синий, зеленый, желтый, коричневый, черный, серый, белый, розовый, оранжевый, желтый / зеленый
Гибкий плоский кабель
Проводник: многожильный медный провод класса 5/6 (гибкий)
Изоляция: компаунд ПВХ
Цвет изоляции: красный, синий, желтый / зеленый или по запросу
Одноядерный гибкий кабель
Проводник: многожильный медный провод класса 5 (гибкий)
Изоляция: компаунд ПВХ
Цвет проводника: красный, синий, зеленый, желтый, коричневый, черный, серый, белый, розовый, оранжевый, желтый / зеленый
Двойной и заземляющий кабель
Проводник: медный провод класса 1/2 (сплошной)
Изоляция: компаунд ПВХ
Цвет изоляции: красный, синий, желтый / зеленый или по запросу
Взаимосвязь между площадью поперечного сечения провода и силой тока __Hongle cable
Общий метод расчета безопасности медных проводов:
Безопасная допустимая нагрузка по току 2.Шнур питания медный 5мм квадратный-28А.
Безопасная токовая нагрузка медного шнура питания 4 квадратных миллиметра-35А.
Безопасная токовая нагрузка 6 квадратных миллиметров, медный шнур питания-48А.
Безопасная токовая нагрузка 10 квадратных миллиметров, медный шнур питания-65А.
Безопасная токовая нагрузка медного шнура питания-91A площадью 16 квадратных миллиметров.
Безопасная токовая нагрузка 25 квадратных миллиметров, медный шнур питания-120А.
Если это алюминиевая проволока, диаметр проволоки должен быть в 1,5-2 раза больше, чем у медной проволоки.
Если ток по медному проводу меньше 28 А, безопасно использовать 10 А на квадратный миллиметр.
Если ток по медному проводу больше 120 А, возьмите 5 А на квадратный миллиметр.
Ток, который может нормально пропускать поперечное сечение провода, можно выбрать в соответствии с общим количеством токов, которые он должен провести, и обычно его можно определить следующим образом:
Десять меньше пяти, сто на два , два, пять, три, пять, четыре, три царства, семнадцать пять и два с половиной раза, количество обновлений медного провода.
Чтобы вам это объяснить, это алюминиевый провод, имеющий меньше 10 квадратов, и квадратный миллиметр умножается на 5. Если это медный провод, он будет увеличен на один уровень, например, медный провод на 2,5 квадрата, он будет рассчитан на 4 кв. Все они представляют собой площадь поперечного сечения, умноженную на 2, 25 квадратов или меньше, умноженных на 4, 35 квадратов или более, умноженных на 3, семь и 95 квадратов, умноженные на 2,5, эти несколько формул должно быть легко запомнить,
Пояснение: Это можно использовать только как оценку, не очень точную.
Кроме того, если вы помните о медном проводе размером менее 6 квадратных миллиметров в комнате, безопасно, что ток на квадрат не превышает 10А. С этой точки зрения вы можете выбрать медный провод квадратного метра 1,5 или алюминиевый провод 2,5 квадрата.
В пределах 10 метров плотность тока в проводе составляет 6 А / мм2, 10-50 метров, 3 А / мм2, 50-200 метров, 2 А / мм2 и менее 1 А / мм2 на высоте более 500 метров. С этой точки зрения, если это не очень далеко, вы можете выбрать 4-х квадратный медный провод или 6-ти квадратный алюминиевый провод.
Если источник питания действительно находится на расстоянии 150 метров (не говоря уже о том, высокое ли это здание), необходимо использовать 4 квадратных медных провода.
Импеданс провода прямо пропорционален его длине и обратно пропорционален диаметру провода. Пожалуйста, обратите особое внимание на материал проводов и диаметр входных и выходных проводов при использовании источника питания. Для предотвращения несчастных случаев из-за перегрева проводов из-за чрезмерного тока.
Ниже приводится таблица диаметра провода и максимального тока, который медный провод может выдерживать при различных температурах.
Диаметр проволоки обычно рассчитывается по следующей формуле:
Медная проволока: S = IL / 54,4 * U`
Алюминиевая проволока: S = IL / 34 * U`
В формуле: I— — максимальный ток, проходящий через провод (А)
L — длина провода (М)
U` — — допустимое падение мощности (В)
S — — Площадь поперечного сечения провода (мм2 )
Описание:
1. Падение напряжения U` может быть выбрано с учетом диапазона оборудования (например, детекторов), используемого во всей системе, до номинального напряжения источника питания системы.
2. Наклоните расчетную площадь поперечного сечения.
Оценка допустимой токовой нагрузки изолированных проводов
Взаимосвязь между допустимой нагрузкой по току и поперечным сечением изолированного проводника с алюминиевым сердечником
截面 (мм² ) | 1 | 1,5 | 2,5 | 4 | 6 | 10 | 16 | 25 | 35 | 500004 | 500004 | 120 | |||
载 流 是 截面 倍数 | 9 | 9 | 9 | 8 | 8 00 | 8 | 8 00 | 9000 | 4 | 3.5 | 3 | 3 | 2,5 | 2,5 | |
载 (A) | 9 | 84 | 84 | 84 32 | 42 | 60 | 90 | 100 | 123 | 150 | 210 | 210 |
Формула оценки: умножьте на девять, получив 2.5 и идти вверх и минус один. Тридцать пять умножить на три и пять, и обе группы минус пять. Условия изменяются, добавляется конверсия, а также высокотемпературная модернизация 10% меди. Количество прокалываемых труб составляет два, три, четыре и восемь или семьдесят шесть процентов тока полной нагрузки.
Описание:
(1) Формула в этом разделе не указывает напрямую допустимую нагрузку по току (безопасный ток) различных изолированных проводов (резиновые и пластмассовые изолированные провода), а указывает «сечение, умноженное на определенное кратное», которое получается путем мысленного расчета.Из таблицы видно, что кратность уменьшается с увеличением сечения.
(2) «Два с половиной пять раз вниз на девять, вверх и вниз на один» относится к изолированным проводам с алюминиевым сердечником различного сечения сечением 2,5 мм2 и ниже, и его допустимая нагрузка по току составляет около В 9 раз больше сечений. Например, провод 2,5 мм2, допустимая нагрузка по току составляет 2,5 × 9 = 22,5 (А). Множественное соотношение между допустимой токовой нагрузкой проводов сечением 4 мм2 и выше и количеством поперечных сечений должно совпадать по номеру провода, а кратные числа последовательно уменьшаются на 1, а именно 4 × 8, 6 × 7, 10 × 6, 16 × 5, 25 × 4.
(3) «Тридцать пять раз по 3,5, удваивается в группах минус пять» означает, что допустимая токовая нагрузка провода 35 мм2 в 3,5 раза превышает количество поперечных сечений, то есть 35 × 3,5 = 122,5 (А). Для провода сечением 50 мм2 и более кратное соотношение между допустимой нагрузкой по току и числом поперечных сечений становится группой из двух номеров проводов, и кратные числа последовательно уменьшаются на 0,5. То есть допустимая токовая нагрузка проводов 50 и 70 мм2 в 3 раза больше числа сечений; допустимая нагрузка на провода 95 и 120 мм2 — 2 шт.В 5 раз больше площади поперечного сечения и так далее.
(4) «Условия изменились, плюс преобразование, высокотемпературное обновление 10% меди». Приведенная выше формула определяется изолированным проводом с алюминиевым сердечником и открытым покрытием при температуре окружающей среды 25 ° C. Если изолированный провод с алюминиевым сердечником подвергается длительному воздействию в области, где температура окружающей среды выше 25 ℃, допустимая нагрузка по току провода может быть рассчитана в соответствии с приведенным выше методом расчета формулы, а затем предоставляется скидка 10%. достаточно; когда изолированный провод с медным сердечником не используется, его допустимая нагрузка по току немного больше, чем у алюминиевого провода той же спецификации.В соответствии с приведенным выше методом формулы можно рассчитать допустимую нагрузку по току на один провод больше, чем у алюминиевого провода. Например, допустимая токовая нагрузка медного провода 16 мм2 может быть рассчитана как алюминиевый провод 25 мм2.
American Wire Gauge and Circular Mils
Американский калибр проводов (AWG) — это стандарт США для размеров проводников. «Калибр» связан с диаметром проволоки.
Стандарт AWG включает медь, алюминий и другие материалы для проводов.Типичная бытовая медная проводка — это AWG номер 12 или 14. Телефонный провод обычно имеет диаметр 22, 24 или 26. Чем выше номер калибра, тем меньше диаметр и тоньше провод.
Круглый Mil — CM — это единица площади, используемая специально для обозначения размера поперечного сечения провода или кабеля.
Американский калибр проволоки (AWG) | Диаметр (мил) (10 -3 дюйм) | Площадь (круглые милы) (CM) (мил 2) ) | Площадь (мм 2 ) | Диаметр (мм) | |||||
---|---|---|---|---|---|---|---|---|---|
0000 (4/0) | 460 | 211592 | 107 | 11.7 | |||||
000 (3/0) | 410 | 167800 | 85,0 | 10,4 | |||||
00 (2/0) | 365 | 133072 | 67,4 | 9,27 | |||||
0 (1/0) | 325 | 105531 | 53,5 | 8,25 | |||||
1 | 289 | 83690 | 42,4 | 7,35 | |||||
2 | 258 | 66369 | 33.6 | 6,54 | |||||
3 | 229 | 52633 | 26,7 | 5,83 | |||||
4 | 204 | 41740 | 21,2 | 5,19 | |||||
5 | 182 | 16,8 | 4,62 | ||||||
6 | 162 | 26251 | 13,3 | 4,12 | |||||
7 | 144 | 20818 | 10.5 | 3,67 | |||||
8 | 128 | 16509 | 8,37 | 3,26 | |||||
9 | 114 | 13092 | 6,63 | 2,91 | |||||
10 | 102 | 1038 | 5,26 | 2,59 | |||||
11 | 90,7 | 8234 | 4,17 | 2,31 | |||||
12 | 80,8 | 6530 | 3.31 | 2,05 | |||||
13 | 72,0 | 5178 | 2,62 | 1,83 | |||||
14 | 64,1 | 4107 | 2,08 | 1,63 | |||||
15 | 57,1 | 1,65 | 1,45 | ||||||
16 | 50,8 | 2583 | 1,31 | 1,29 | |||||
17 | 45,3 | 2048 | 1.04 | 1,15 | |||||
18 | 40,3 | 1624 | 0,823 | 1,02 | |||||
20 | 32,0 | 1022 | 0,518 | 0,812 | |||||
21 | 28,5 | 8 | 0,410 | 0,723 | |||||
22 | 25,3 | 642 | 0,326 | 0,644 | |||||
23 | 22.6 | 510 | 0,258 | 0,573 | |||||
24 | 20,1 | 404 | 0,205 | 0,511 | |||||
25 | 17,9 | 320 | 0,162 | 0,455 |
Свойства материала | Стекловолокно | Кевлар® | Углеродное волокно |
---|---|---|---|
Плотность | P | E | E |
Предел прочности | F | G | E |
Прочность на сжатие | G | P | E |
Жесткость | F | G | F |
Сопротивление усталости | G-E | E | G |
Сопротивление истиранию | F | E | F |
Шлифование / обработка | E | P | E |
Электропроводность | P | P | E |
Термостойкость | E | F | E |
Влагостойкость | G | F | G |
Совместимость смол | E | F | E |
Стоимость | E | F | P |
P = плохо, G = хорошо, F = удовлетворительно, E = отлично
Эксперимент
Описание: Устройство тянет за каждый конец материала, пока он не сломается.
Стекловолокно 00:00
Кевлар 01:10
Углеродное волокно 03:09
Видео продолжительностью 5 минут 5 секунд без звука.
Исполнительный продюсер Эд Лайтила
Ведущий Стивен Форселл
Видеограф Бритта Лундберг
Окончательные данные
Необработанные данные для стекловолокна
Смещение увеличивается от нуля до немногим более 5 мм.Нагрузка увеличивается почти
линейно от 0 до примерно 12 кН перед почти вертикальным падением.
Исправленные данные для стекловолокна
Инженерное напряжение увеличивается от нуля до примерно 0.10. Инженерное напряжение возрастает.
линейно от нуля до примерно 170 МПа, предел прочности. Модуль составляет 1,7 ГПа.
Скорректированные данные для кевлара
Инженерное напряжение увеличивается от нуля до примерно 0.11. Инженерное напряжение возрастает.
линейно от нуля до примерно 265 МПа, предел прочности. Модуль составляет 2,3 ГПа.
Исправленные данные для углеродного волокна
Инженерное напряжение увеличивается от нуля до примерно 0.10. Инженерное напряжение возрастает.
линейно от нуля до примерно 580 МПа, предел прочности. Модуль составляет 5,7 ГПа.
Выводы
Композитный материал из углеродного волокна имеет гораздо более высокий предел прочности и модуль упругости.
эластичности, чем другие материалы.Обратите внимание, что все они ломаются «хрупко»,
так как кривая является линейной до тех пор, пока она не разорвется или не сломается без изгиба кривой при
высокие нагрузки. Следовательно, при этом не происходит постоянного изменения первоначальной формы.
тест, и, следовательно, никакой пластичности.
Виртуальные примеры
Вы видели эксперименты с композитными материалами.Сравните композитный материал
Кривые напряжения-деформации с кривыми для полимера и стали.
Сталь для испытаний на растяжение
Стальной образец с шейкой имеет постоянную зависимость напряжения от деформации.Стресс увеличивается
почти вертикально, затем постепенно опускается.
Полимер для испытаний на растяжение
Образец растягивающегося полимера имеет разрывную зависимость напряжения от деформации.В
напряжение увеличивается почти вертикально, затем падает и неравномерно увеличивается.
Фото галерея
Ниже представлены оптические фотографии разбитых или расколотых образцов, а также крупные планы.
поверхности излома, снятые с помощью растрового электронного микроскопа.Изучение этих
поверхности излома также являются очень важной частью материаловедения и инженерии,
что делает это областью специализации.
Взаимосвязь между массой меди, шириной следа и текущей пропускной способностью
Теоретически допустимая нагрузка на печатную плату (PCB) определяется площадью поперечного сечения следа и повышением температуры.Кроме того, площадь поперечного сечения дорожки прямо пропорциональна ширине дорожки и толщине меди. Итак, возникает вопрос: применимо ли это правило также к соотношению между допустимой нагрузкой по току и площадью поперечного сечения дорожки, то есть прямо пропорциональна ли пропускная способность дорожки ее площади поперечного сечения? При таком же повышении температуры, которое составляет 10 ° C, дорожка на 10 мил с медной массой в 1 унцию способна выдерживать ток не более 1 ампер, и мы можем быть уверены, что след на 50 мил способен выдерживать ток, превышающий 1 ампер.Тогда каков будет максимальный ток, который он может удерживать, 5 ампер на основе простого множественного расчета? На самом деле это намного сложнее. Согласно MIL-STD-275, нам говорят, что максимальный ток, который может выдержать 50-миллиметровый след, составляет 2,6 ампера.
Повышение температуры | 10 ° C | 20 ° C | 30 ° С | ||||||
---|---|---|---|---|---|---|---|---|---|
Медь | 0,5 унции | 1.0 унция | 2,0 унции | 0,5 унции | 1.0 унций | 2,0 унции | 0,5 унции | 1.0 унция | 2,0 унции |
Ширина следа (дюйм) | Максимум. текущие усилители | ||||||||
0,01 | 0,5 | 1.0 | 1.4 | 0,6 | 1.2 | 1.6 | 0,7 | 1.5 | 2.2 |
0,015 | 0,7 | 1.2 | 1.6 | 0.8 | 1.3 | 2,4 | 1.0 | 1.6 | 3.0 |
0,02 | 0,7 | 1.3 | 2.1 | 1.0 | 1,7 | 3.0 | 1.2 | 2,4 | 3,6 |
0,025 | 0,9 | 1,7 | 2,5 | 1.2 | 2.2 | 3.3 | 1.5 | 2.8 | 4.0 |
0,03 | 1.1 | 1.9 | 3.0 | 1.4 | 2,5 | 4.0 | 1,7 | 3,2 | 5.0 |
0,05 | 1.5 | 2,6 | 4.0 | 2.0 | 3,6 | 6.0 | 2,6 | 4.4 | 7.3 |
0,075 | 2.0 | 3.5 | 5,7 | 2,8 | 4.5 | 7,8 | 3.5 | 6.0 | 10.0 |
0,1 | 2,6 | 4.2 | 6.9 | 3.5 | 6.0 | 9.9 | 4.3 | 7,5 | 12,5 |
0,2 | 4.2 | 7.0 | 11,5 | 6.0 | 10.0 | 11.0 | 7,5 | 13,0 | 20,5 |
0,25 | 5.0 | 8,3 | 12,3 | 7.2 | 12,3 | 20,0 | 9.0 | 15.0 | 24,0 |
Тем не менее, приведенная выше таблица была постепенно заменена Общим стандартом проектирования печатных плат IPC-2221 в качестве справочного материала, на основе которого точно спроектирована печатная плата.
Единица измерения толщины меди
Перед тем, как приступить к настоящему обсуждению, необходимо ввести единицу измерения толщины меди в унциях (oz). Это общепринятая единица измерения веса, но в конструкции печатной платы она использовалась для измерения толщины меди. Когда дело доходит до преобразования толщины меди в унцию, следует помнить о некоторых правилах. Поскольку характеристики меди измеряются по весу меди на квадратный фут, 1 унция, которая обычно упоминается, на самом деле относится к тому факту, что каждый квадратный фут этой меди равен 1 унции с точки зрения веса.В таких случаях, чем толще медь, тем больше она весит, поскольку вес меди прямо пропорционален ее толщине. В результате толщину меди можно представить в единицах веса — унциях. Кроме того, унция также может быть переведена в миллиметры или милы. Некоторые обычные преобразования перечислены ниже:
0,5 унции = 0,0007 дюйма = 0,7 мил = 0,018 мм
1,0 унции = 0,0014 дюйма = 1,4 мил = 0,035 мм
2,0 унции = 0,0034 дюйма = 2,8 мил = 0,070 мм
Взаимосвязь между площадью поперечного сечения медной фольги печатной платы и максимальной пропускной способностью по току и повышением температуры
На основании объяснения Раздела 6.2 в IPC-2221, то есть требования к проводящим материалам, допустимую нагрузку по току можно разделить на два типа: внутренние проводники и внешние проводники. Максимальная допустимая нагрузка по току внутренних проводников составляет половину от максимальной допустимой нагрузки по току внешних проводников. Таблица 6-4 в IPC-2221 демонстрирует взаимосвязь между площадью поперечного сечения медной фольги, повышением температуры и максимальной допустимой нагрузкой по току между внешними и внутренними проводниками.
Более того, упрощенная формула была резюмирована на основе приведенных выше таблиц: I = KΔT0.44A0,75
В этой формуле K — поправочный коэффициент. Это эквивалентно 0,024 для внутренних проводников и 0,048 для внешних проводников. ΔT — Макс. разность температур, показывающая разницу температур между нагревательной медью и температурой окружающей среды с единицей измерения в градусах Цельсия (° C). A относится к площади поперечного сечения медной дорожки с единицей измерения квадратный мил (мил ²). I относится к допустимой нагрузке по току в амперах (Ампер).
В связи с развитием электронных технологий, некоторые онлайн-калькуляторы ширины следа стали доступны разработчикам печатных плат.Это настолько удобный инструмент, что как только требуемый ток и масса меди будут заполнены, будет обеспечена соответствующая ширина дорожек внутренних и внешних проводников. Калькулятор ширины следа печатной платы и калькулятор ширины следа печатной платы ANSI IPC-2221A относятся к инструментам, представленным только что.
Элементы, определяющие максимальную пропускную способность по току
Хотя простую формулу можно напрямую использовать для расчета максимальной допустимой нагрузки по току, практические случаи не так просты и понятны.Это связано с тем, что, помимо площади поперечного сечения и повышения температуры, допустимая токопроводящая способность также зависит от других элементов, таких как количество компонентов, контактных площадок и переходных отверстий.
Для дорожек с множеством распределенных контактных площадок дорожка лужения будет работать с гораздо большей емкостью, чем обычные дорожки. Это не редкость, в которой инженеры встречаются на печатных платах, на которых какой-то след между контактными площадками сгорает, поскольку через них протекает большой ток. Причина такой трагедии заключается в том, что слишком много паяльной пасты на компонентах или штырях приводит к увеличению площади поперечного сечения, в то время как никаких изменений между контактными площадками не происходит.В результате, как только начинается подача питания или выполняется изменение порядка на трассе, возможно вызвать сверхбольшой переходный выброс или даже выгорание трассы между контактными площадками.
Одно из решений этой проблемы — увеличение ширины следа. Когда следу не разрешено расширяться, паяльная маска может быть нанесена на следы, которые имеют тенденцию к выгоранию, а паяльная паста должна быть напечатана в соответствии с процедурой SMT (технология поверхностного монтажа). После пайки оплавлением ширина дорожки увеличится, так что пропускная способность по току также возрастет.
Одним словом, хотя допустимая токовая нагрузка трассы печатной платы может быть получена по таблице, предоставленной IPC, или по формуле, они применяются только для расчета прямой трассы. Однако при изготовлении или сборке реальной печатной схемы необходимо тщательно учитывать пыль или загрязняющие вещества, поскольку загрязнение может привести к частичному разрушению следов. Таким образом, когда мы проектируем максимальную пропускную способность по току в любом случае, необходимо добавить фактор безопасности, чтобы предотвратить возникновение проблемы перегрузки.
Кроме того, особое внимание следует уделить следам поворота. Если в следе имеет место острый угол, возможно, возникнет негладкий переход, что, возможно, приведет к незначительному влиянию на небольшой ток или след с большой шириной. Но когда дело доходит до низкой допустимой нагрузки по току, могут возникнуть проблемы.