Как работает автоматический выключатель: Автоматические выключатели — конструкция и принцип работы

Содержание

Устройство УЗО и принцип действия

Рад приветствовать вас, уважаемые читатели сайта elektrik-sam.info.

В этой статье мы подробно рассмотрим устройство и принцип работы устройства защитного отключения  УЗО, рассмотрим на примерах как работает УЗО.

УЗО относятся к электрическим аппаратам защиты, как и автоматические выключатели. Для чего же были придуманы эти интересные устройства, неужели установки автоматических выключателей недостаточно?

Со временем изоляция проводов стареет, так же она может быть повреждена, могут ослабнуть контактные соединения токоведущих частей приборов. В результате этих факторов появляются утечки тока, которые могут вызвать искрение и привести к возгоранию.

Также человек может случайно коснуться рукой за оголенный фазный провод, который находится под напряжением. Дети, оставшись без присмотра родителей, могут «изучать» электричество, вставляя в розетку металлический предмет. В этом случае человека ударит током, произойдет утечка тока через тело на землю, а это очень опасно, ведь величина тока в этом случае может достигать нескольких сотен миллиампер.

Обычные автоматические  выключатели на такую «незначительную» для них  утечку тока не отреагируют. Они срабатывают только на токи перегрузки и при коротком замыкании.

Например, у автомата номиналом 10А с время-токовой характеристикой срабатывания В, тепловой расцепитель начнет срабатывать при токе, превышающем номинальный на 13%, т.е. 11,3А, причем время срабатывания будет больше одного часа. А при токе, превышающем номинальный на 45%, т.е.  14,5А в течение одного часа. Электромагнитный расцепитель автоматического выключателя будет срабатывать при значениях тока от 30А.

Поэтому,  чтобы  защитить людей от поражения электрическим током и для предотвращения опасной утечки тока, которая может привести к пожару в результате повреждения изоляции электропроводки или бытовых приборов применяются  устройства защитного отключения.

У автоматических выключателей основной параметр – номинальный ток.

Основной же параметр УЗО – это его чувствительность (номинальный отключающий дифференциальный ток, так называемая «уставка» по току утечки).

Для защиты человека в бытовых электросетях от поражения электрическим током используют УЗО чувствительностью 10 и 30 мА.

Для защиты от возможного возникновения пожара служат УЗО чувствительностью 100 или 300 мА.

Если проводка неразветвленная, с малым количеством групп, то может использоваться одно общее УЗО на 30 мА, как противопожарное, так и для защиты человека от поражения электрическим током. 

Давайте рассмотрим устройство и принцип действия УЗО

Конструктивно УЗО собрано в корпусе из диэлектрического материала. Внутри содержит трансформатор тока, выполненный на тороидальном ферромагнитном сердечнике с тремя обмотками – две первичные и одна обмотка управления.

Две первичные токовые обмотки включены встречно. Первая обмотка образована фазным проводом, в ней протекает ток к нагрузке (к потребителю). Вторая обмотка образована нулевым проводом, в ней протекает обратный ток от нагрузки (от потребителя).

Как работает УЗО?

В обычном режиме, когда в цепи нет утечки, токи, протекающие в обоих обмотках равны по значению, но противоположно направленны. При протекании в обмотках, эти токи наводят в сердечнике трансформатора тока магнитные потоки. Наведенные магнитные потоки направлены встречно и  компенсируют друг друга, поэтому суммарный магнитный ФΣ поток равен нулю.

Предположим, что произошел пробой изоляции  на корпус электроприбора.

В этом случае токи в фазном и нулевом проводах будут различны. По фазному проводнику через УЗО кроме тока нагрузки IL будет протекать еще дополнительный ток — ток утечки ID, который для трансформатора тока будет дифференциальным (т.е. разностным). Разные по значению токи в первичных обмотках (IL + ID в фазном проводнике и IN, равный по значению IL, в нулевом рабочем проводнике) будут наводить в сердечнике разные по значению магнитные потоки. Результирующий магнитный поток будет отличен от нуля. По закону электромагнитной индукции он будет наводить электрический ток в обмотке управления. Если этот ток достигнет значения, достаточного для срабатывания электромагнитного реле Р, то оно сработает, приводя в движение расцепитель, силовые контакты УЗО разомкнутся. В результате электроустановка, находящаяся под защитой УЗО обесточится.

Аналогично, если человек  прикоснется к открытым токопроводящим частям или к корпусу электроприбора, на который произошел пробой изоляции,  возникнет ток утечки, который потечет через тело человека на землю. В обмотке управления УЗО будет наводиться ток, который приведет к срабатыванию электромагнитного реле Р и цепь обесточится.

Для периодического контроля исправности УЗО предусмотрена кнопка «Тест». При нажатии на нее искусственно создается ток утечки. Если УЗО исправно, оно должно срабатывать при нажатии на эту кнопку.

По конструктивному исполнению УЗО бывают электромеханические (они не зависят от напряжения питания) и электронные (нуждаются в дополнительном источнике питания, который получают от контролируемой цепи, либо от дополнительного источника). В свою очередь, бывают электронные УЗО, которые отключают защищаемую цепь при исчезновении напряжения в питающей сети, и бывают не отключающие защищаемую цепь.

Как не подключая к электрической сети, определить тип УЗО смотрите в статье Как определить тип УЗО — электромеханическое или электронное?

Так же эти два типа УЗО различно ведут себя при аварийном режиме работы электросети, например, при достаточно часто встречающемся в наших домах обрыве нулевого провода.

Теперь вы знаете, как работает УЗО.

Подробно Устройство и принцип действия УЗО смотрите в видео


Полезные статьи по теме:

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Конструкция УЗО.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Дифавтомат устройство и принцип работы.

Приветствую Вас уважаемые гости и постоянные читатели сайта elektrik-sam.info!

Начинаем очередную серию публикаций в рамках курса «Автоматические выключатели, УЗО и дифавтоматы — подробное руководство», на этот раз посвященную дифференциальным автоматам. Начнем с рассмотрения устройства и принципа работы дифавтоматов.

Автоматический выключатель дифференциального тока или дифавтомат — это устройство, объединяющее в одном корпусе функции автоматического выключателя и УЗО. Т.е. он позволяет защитить контролируемую цепь от токов перегрузки и токов короткого замыкания (функции автоматического выключателя) и от токов утечки (функции УЗО), позволяя защитить человека от возможного поражения электрическим током и предотвратить возможность возгорания в результате нарушения изоляции токоведущих частей электроустановки.

Конструктивно дифавтоматы изготавливаются из диэлектрического материала и имеют защелку для установки на DIN-рейку. Установка производится так же, как и установка УЗО.

Для однофазной сети 220В выпускаются двухполюсные дифавтоматы. К клеммам верхних полюсов подключается фазный и нулевой проводник питающей сети, а к зажимам нижних полюсов – фазный и нулевой проводник от нагрузки. При этом, в зависимости от марки производителя и серии они для своей установки на DIN-рейку могут занимать как два, так и более модулей.

Для трехфазной сети 380В выпускаются четырехполюсные дифавтоматы. К верхним клеммам подключаются три фазных провода и ноль со стороны питания. К нижним клеммам три фазных провода и ноль от нагрузки.

При установке на DIN-рейку четырехполюсные дифавтоматы занимают место больше четырех модулей, в зависимости от марки производителя. Т.е. полюсов для подключения проводов четыре, а занимаемое место в электрощите более четырех модулей, за счет блока дифференциальной защиты.

Применение двухполюсных дифавтоматов, которые при установке занимают два модуля, позволяет сэкономить место в электрощите и упростить монтаж, вместо отдельно установленных автоматического выключателя и УЗО (которые вместе занимают три модуля).

Мы помним из раздела, посвященного устройствам защитного отключения, что УЗО не защищает от сверхтоков и требует установки последовательно с ним автоматического выключателя.

При разветвленной проводке с большим количеством групп, экономия места в электрощите может быть довольно существенной. Однако, зачастую стоимость дифавтомата больше, чем стоимость отдельно установленных автомата и УЗО.

Конструктивно дифавтомат состоит из двух- или четырехполюсного автоматического выключателя и включенного последовательно с ним модуля дифференциальной защиты. Подробно конструкцию и принцип работы автоматических выключателей и УЗО мы рассматривали в предыдущих разделах, ссылки на них внизу этой статьи.

Повторим вкратце основные моменты.

Модуль автоматического выключателя обычно устанавливается в фазные проводники и содержит тепловой расцепитель для защиты от токов перегрузки и электромагнитный расцепитель (катушку соленоида с подвижным сердечником) для защиты от токов короткого замыкания.
Принцип действия такой же, как и у обычного автоматического выключателя.

При возникновении тока перегрузки биметаллическая пластина нагревается проходящим через нее электрическим током, изгибается, и, если ток в цепи не уменьшается, приводит в действие механизм расцепления, размыкая защищаемую цепь.

При коротком замыкании ток в цепи мгновенно возрастает, наводимое в катушке соленоида магнитное поле перемещает сердечник, который приводит в действие механизм расцепителя и размыкает силовые контакты.

Для защиты силовых контактов дифавтомата от разрушающего действия электрической дуги, применяется дугогасительная камера.

Модуль дифференциальной защиты представляет собой дифференциальный трансформатор тока, через который проходит фазный и нулевой проводник (первичная обмотка) и обмотка управления (вторичная обмотка). В четырехполюсных дифавтоматах через дифференциальный трансформатор тока проходит три фазных проводника и нулевой.

В обычном режиме работы через фазный провод проходит ток к нагрузке, а через нулевой проводник от нагрузки, т.е. токи равны и направлены встречно. Геометрическая сумма токов равна нулю, наводимые ими магнитные потоки в обмотке трансформатора тока взаимно компенсируют друг друга, и результирующий магнитный поток равен нулю.

При возникновении тока утечки баланс токов нарушается, поскольку в фазном проводе вместе с током нагрузки протекает и ток утечки. Токи в фазном и нулевом проводниках наводят разные по величине магнитные потоки, их баланс нарушается и в тороидальном сердечнике трансформатора тока возникает разностный магнитный поток. Под действием разностного магнитного потока во вторичной обмотке управления возникает ток. Когда величина этого тока превысит пороговое значение, срабатывает механизм расцепления и силовые контакты дифавтомата отключаются от питающей сети.

Как и УЗО, модуль дифференциальной защиты дифавтоматов может быть электромеханическим или электронным. В электронных при возникновении утечки, ток в обмотке управления подается на плату электронного усилителя с катушкой электромагнитного сброса и через механизм расцепителя отключает силовые контакты дифавтомата от питающей сети.

Дифавтоматы с электронным модулем дифференциальной защиты, в отличие от электромеханических, могут потерять работоспособность при обрыве фазного или нулевого проводника со стороны питающей сети (подробно об этом смотрите видео работа УЗО при обрыве нуля), поскольку отсутствует питание, необходимое для работы платы усилителя.

Дифавтоматы некоторых производителей имеют встроенные индикаторы, которые позволяют определить причину срабатывания:

— дифавтомат сработал от перегрузки по току: тепловая защита или электромагнитный расцепитель от токов короткого замыкания;
— или сработал модуль дифференциальной защиты дифавтомата в результате утечка тока.

Если таких индикаторов нет, тогда в случае отключения дифавтомата, неясно что вызывало срабатывание – перегрузка по току, или дифавтомат сработал в результате возникновения тока утечки.

Для проверки исправности модуля дифференциальной защиты на корпусе устройства расположена специальная кнопка «Тест». При нажатии на эту кнопку создается искусственный ток утечки и если дифавтомат отключился, значит он исправен.

Более наглядно принцип работы смотрите в видео Дифавтомат устройство и принцип работы:

Интересные материалы по теме:

Автоматические выключатели УЗО дифавтоматы — руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Конструкция (устройство) УЗО.

Устройство УЗО и принцип действия.

Принцип работы трехфазного УЗО.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

УЗО основные характеристики. Часть 1.

УЗО основные характеристики. Часть 2.

Автоматические выключатели — конструкция и принцип работы.

A, B, C и D

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Принцип работы автоматического выключателя

Принцип работы автоматического выключателя

                 Для защиты бытовых электрических цепей обычно используются автоматические выключатели модульной конструкции. Компактность, легкость монтажа и замены, в случае необходимости, объясняет их широкое распространение.

                 Внешне такой автомат представляет собой корпус из термостойкой пластмассы. На лицевой поверхности расположена рукоятка включения и выключения, сзади – фиксатор-защелка для крепления на DIN-рейке, а сверху и снизу – винтовые клеммы.

              В режиме штатной работы через автомат протекает ток, меньший или равный номинальному значению. Питающее напряжение от внешней сети подается на верхнюю клемму, соединенную с неподвижным контактом. С неподвижного контакта ток поступает на замкнутый с ним подвижный контакт, а от него, через гибкий медный проводник – на катушку соленоида. После соленоида ток подается на тепловой расцепитель и уже после него – на нижнюю клемму, с подключенной к ней сетью нагрузки.

 

1. Винтовые клеммы
2. Регулировочный винт теплового расцепителя
3. Биметаллическая пластина (тепловой расцепитель)
4. Соленоид (электромагнитный расцепитель)
5. Подвижный контакт
6. Дугогасительная камера
7. Механизм расцепления
8. Рычаг управления

 

Как работает автомат в режиме перегрузки?

               Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления.

 

Автомат отключается и размыкает цепь.

            Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа.

Примечание: Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи).

 

Внимание! Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата.

 

            На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого.

           Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита, стиральная и посудомоечная машина, утюг, электрочайник и т.д.) – вполне может привести к срабатыванию теплового расцепителя.

Примечание: В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете как работает автоматический выключатель при перегрузках

 

Как работает автомат в режиме короткого замыкания

            В случае короткого замыкания принцип работы автоматического выключателя иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает.

Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной.

 

 

               Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи.

 

Внимание! Срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур.

            В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов.

            Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга.

 

  

             Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры.

             Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги.

Примечание: В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей.

           Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно – виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло.

Внимание! Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током.

Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами.

 

P. S. Обязательно подпишитесь на новые статьи информационного портала «azbukainfo-tlt.ru» и получайте свежую,  полезную информацию по  ремонту своего жилища — своими руками, по оптимизации бюджета,  полезную информацию по строительству вашего дома, купле-продаже квартир, аренды и всего, что касается недвижимости. Хотите оперативно узнавать о новых статьях — установите Виджет Яндекса.

 

Если Вы неуверенны в своих силах и полученных знаний, опасаетесь за жизнь свою и своих близких, переживаете за безопасность своего жилища Оставить заявки — Специалисты компании, помогут Вам, в решении всех насущных проблем и вопросов.

 

P.S. S. Надеюсь, что мой рассказ помог Вам разобраться в Принципах работы автоматического выключателяи будет вам полезным. Читайте, оставляйте комментарии, спрашивайте, может что не понятно. Так же не забудьте поделиться со своими друзьями и знакомыми найденной информацией, т. к. она им тоже может понадобится — просто нажмите одну из кнопок социальных сетей, расположенных ниже.

 

На главную

 

принцип работы и схема подключения

Все электрические цепи оснащены вспомогательными защитными системами. В качестве дополнения для них выступает независимый расцепитель. Его связывают с электрической системой механическим методом. Если возникают угрозы для работы электрических приборов и самой линии, расцепитель преднамеренно отключает цепь питания. Чаще всего это случается при аварийных ситуациях.

Что такое независимый расцепитель

Независимый расцепитель — это аппарат, осуществляющий удаленную деактивацию защитной аппаратуры. Чаще всего его используют в связке с автоматическими выключателями с 1-4 полюсами. Расцепительную систему присоединяют к вводному механизму. При активации экстренной ситуации он производит полное отключение подачи электрического тока.

Что собой представляет автоматический выключатель

Конструкция агрегата произведена в виде электромагнита. Когда на него поступает импульс, профильный рычаг начинает воздействовать на электрический механизм, деактивируя защитное устройство.

Электромагнитные катушки, которыми оснащено устройство, пропускают переменный или постоянный ток. Оптимальный уровень напряжения для них 12-60 В и 110-415 В. Метод сцепления с автоматом выбирается в зависимости от типа катушки.

Схема подключения независимого устройства расцепления

Обратите внимание! Происходит фиксация обычно на правую или левую сторону.

Технические характеристики расцепителя

Внутри автомата находятся два типа устройств расцепления. Каждый из них работает в своем токовом диапазоне. Если оба устройства начинают работать одновременно, то это приводит к отключению автомата, когда через него проходит сверхток.

Тепловой расцепительный механизм функционирует за счет нагревания биметаллической пластинки. Она калибрована, при определенной силе тока нагревается до определенных показателей. Это становится причиной появления критического изгиба и деактивации автомата.

Второй агрегат, электромагнитный, работает на более высокой скорости, чем тепловой. Он функционирует на основе электромагнита, который выключает нагрузку при возникновении короткого замыкания. Ток электромагнитного выключателя в 3 раза выше напряжения теплового устройства. Также он может быть выше в 20 раз.

Автоматический расцепитель оснащен диодным выпрямителем. Системные динисторы применяются разной проводимости. В устройствах для фазовых выключателей предусматривается использование трансивера. Реле устанавливают в нижней части системы. Катушка электромагнита обычно рассчитана на напряжение 12-60 V переменного тока.

Компактный автоматический выключатель

Обратите внимание! В некоторых агрегатах напряжение держится на отметке 110-415 V.

Назначение независимого расцепителя

Независимым расцепителем называют дополнительное оборудование для автоматических выключателей. Его применяют, чтобы дистанционно отключать выключатели нагрузки. Устройства расцепления преимущественно используют для проектировки системы вентиляции.

Схема автоматической системы

Если ориентироваться на нормативные акты, то вентиляция в случае пожара должна отличаться способностью к деактивации. Для этого к вводному аппарату чаще всего присоединяют независимый расцепитель. Он может выключать однофазные и трехфазные системы.

Обратите внимание! Чтобы система начала работать, требуется подать импульс на катушку защитного агрегата. Для возведения аппарата в первоначальное состояние потребуется активировать кнопку возврата.

Принцип работы

Суть функционирования независимого устройства расцепления основана на изменении расположения контактов. Это случается из-за поступления короткого импульса со стороны диодного выпрямителя. В качестве проводника в этом случае выступает транзистор. Регулировка частотности выключателя осуществляется за счет модулятора. Чтобы бороться с электромагнитными помехами, применяется кенотрон.

Автоматический расцепитель PH 47

Внешне устройство — корпус, который изготовлен на основе износостойкой пластмассы. Кнопка активации располагается на передней стороне системы. Сзади на агрегате имеется фиксирующая защелка, в нижней части — винтовые клеммы.

В обычной работе аппарат пропускает ток, который равен номинальному значению (она также может быть меньше). По верхней клемме идет питающее напряжение от внешней сети. После этого ток подается на тепловой выключатель, затем на электромагнитный. Если происходит экстренный случай, то расцепитель отсоединяет защищаемую цепь и выключает автомат.

Важно! Чаще всего причиной срабатывания системы становится короткое замыкание.

Конструкция независимого расцепителя

Независимый выключатель — это специализированный аппарат для удаленной деактивации автомата. По своей конструкции система напоминает магнит. В тот период, когда на него оказывает влияние кратковременный импульс, расцепительный механизм при помощи оборудованного рычага оказывает давление, за счет чего происходит отключение защитного устройства.

Штифт автоматического выключателя

В каждой конструкции имеется электромагнитная катушка, обладающая разными показателями мощности. Расцепительный механизм пропускает постоянный и переменный токи. Уровень напряжения варьируется в пределах 110 до 415 В или от 12 до 60 В. Степень показателей обычно зависит от модели агрегата.

Разница между составными расцепителями заключается в токовой защите. Электромагнитное устройство представляет ее без выдержки времени, то есть без токовой отсечки.

К сведению! Тепловое расцепительное устройство реализовывает интегральную зависимость времени реагирования защитной системы от величины тока. Он обеспечивает отключение автоматического оборудования в случае перегрузки, когда потребляемый ток становится больше номинального на 20 %.

Схемы подключения независимого расцепителя (PH 47)

Если брать во внимание вентиляционную конструкцию, то подключать расцепитель необходимо через динисторы. Соединение выходных проводов в этом случае происходит через изоляторы. Подключение агрегата к автоматическому выключателю осуществляется за счет отрицательного сопротивления на уровне 25 Ом.

Этапы подключения независимого расцепителя к автоматическому выключателю:

  1. Чтобы обеспечить подсоединение с реле, мастера применяют расширитель.
  2. При подключении расцепительного устройства также потребуется проверить пороговое сопротивление системы. Оно не должно быть выше 30 Ом.
  3. Зафиксировать выключатель нужно в силовом щитке.

Обратите внимание! Чтобы проверить напряжение, мастеру следует воспользоваться тестером.

Защитная система для электрических сетей

Независимый расцепитель — коммутационный агрегат, включающий токи, а также проводящий и отключающий их при нормальных условиях в цепи. Он используется для защиты электрических цепей от перегрузок или короткого замыкания. Характерные особенности расцепительного агрегата — многократное применение и стабильное срабатывание в критических случаях.

Как выбрать автоматический выключатель — Asutpp

Основная задача автоматических выключателей заключается в обеспечении защиты электрических цепей от критических токов, которые могут быть вызваны перегрузкой или КЗ. Когда через защитное устройство проходит электроток выше номинального, производится отключение подачи электропитания.

Очень важно правильно подобрать автоматы при организации электропроводки, если у них будет ток отсечки ниже допустимого, это вызовет ложные срабатывания. Установка устройств защитного отключения с высоким порогом срабатывания приведет к повреждению электропроводки и всем сопутствующим этому неприятностям.

Понимание принципа работы УЗО позволит правильно подобрать автоматы, поэтому имеет смысл рассказать об их устройстве.

Устройство и основные узлы

На изображении, размещенном ниже, показаны основные узлы УЗО.

Узлы, отвечающие за работу автоматического выключателя

  • A – узел электромагнитной защиты;
  • B – механизм включения-отключения;
  • C – узел тепловой защиты.

Подробно о назначении каждого из них.

Узел электромагнитной защиты

Данный узел выполняет функцию электромагнитного расцепителя, основная задача которого произвести отключение при прохождении через автомат напряжения с высокой силой электротока, что характерно при КЗ.

Размещенный ниже график наглядно демонстрирует характеристики приборов категорий «B», «C», «D».

Характеристики бытовых УЗО

Вертикальная шкала графика отображает скорость с которой происходит срабатывание (сек.), горизонтальная — превышение номинального электротока (I/In).

Как видно из графика, чем больше превышение номинального электротока, тем быстрее время срабатывания, что очень важно при образовании в цепи сверхтоков, характерных для КЗ.

Электромагнитный узел защиты (показан на фото), по сути является обычным соленоидом, при движении сердечника которого происходит размыкание контакта.

Узел электромагнитной защиты крупным планом

Принцип действия этого узла следующий:

При прохождении напряжения контактную группу «С» с силой тока выше номинального, в катушке «А» образуется электромагнитное поле, достаточное, чтобы втянуть сердечник «B», разрывающего цепь электропитания.

Узел, обеспечивающий тепловую защиту

Задача этого узла также заключается в разрыве электроцепи при относительно небольшом превышении номинального электротока. Но, в отличие от электромагнитной защиты, отключение выполняется через относительно небольшой промежуток времени.

Такая реализация позволяет не допустить ложное срабатывание, когда происходит кратковременно незначительное превышение номинального электротока. Конструктивная реализация узла показана на фотографии.

Устройство тепловой защиты: «A» — пластина, изготовленная из биметалла, «B» — контакт

Принцип срабатывания: когда через пластину  «A» проходит электроток выше номинального значения, она начинает нагреваться. В результате особенностей материала меняется геометрия пластины, в результате она отключается от контакта «B».

Механизм включения-отключения

Этот узел позволяет привести автомат в рабочее состояние после срабатывания узлов защиты, а также произвести ручное отключение электроцепи, если в том возникла необходимость, например, при проведении ремонтных работ по замене или модернизации проводки.

Основные критерии при выборе

УЗО подбирается под характеристики электропроводки. Учитывая, что в бытовых электропроводках, как правило, используются однополюсные автоматические выключатели, имеет смысл рассмотреть их основные параметры:

  • ток отсечки, определяющий допустимую нагрузку;
  • категории срабатывания по КЗ;
  • максимальные отключающие способности.

Ток отсечки

Этот параметр подбирается в зависимости от нагрузки на линии электропроводки.  Для его расчета используется производная от закона Ома, а именно: где Р – суммарная мощность нагрузки на линию, а U – напряжение цепи. Напоминаем, что данная зависимость определяется ваттами, амперами и вольтами, говоря проще, киловатты необходимо перевести в ватты.

Приведем пример: допустим, необходимо подобрать автомат для линии с суммарной мощностью 5 кВт (она указывается на электроприборах). Ток отсечки будет равен 5000/220, то есть не менее 23 А.

При этом также необходимо учитывать допустимую нагрузку на электропроводку, она зависит от сечения провода. Чтобы не путаться в расчетах, проще привести готовую сводную таблицу для скрытой проводки медным проводом.

Сечение провода

(мм2)

Допустимый электроток

(А)

Допустимая мощность нагрузки

(кВт)

1,50194,1
2,50275,9
4388,3
64610,1
107015,4

Выбирая УЗО, следует принимать во внимание величину допустимой нагрузки на электропроводку. Если требуется подключить приборы большей мощности, установка автомата большего номинала будет не правильным решением, потребуется проложить новую линию соответствующего сечения.

На фотографии показано, где отображается номинально допустимый ток.

Красным отмечен ток отсечки

Категории срабатывания

Этот параметр характеризует зависимость скорости отключения от превышения номинального тока. Время-токовый график для категорий В, С и D был приведен выше.

Рассмотрим предназначение категорий:

  • В – срабатывание при превышении номинального тока в 3-5 раз, как правило, используется в цепях освещения;
  • С – мгновенное отключение при 5-10 кратном превышении, предназначены для подключения бытовых приборов;
  • D – срабатывание, когда нагрузка больше номинальной в 10-20 раз, в быту практически не используются, применяются для цепей с высокими пусковыми токами (насосы, подъемные механизмы и т.д.).

Другие категории, например, «К» (УЗО для активно-индуктивной нагрузки) или Z (устанавливаются для электроники) для бытовой электропроводки не предназначены. Где производится маркировка категории, согласно принятым стандартам, продемонстрировано на фотографии.

Обозначение категории срабатывания при КЗ (отмечено красным)

Допустимая отключающая способность

Этот параметр отображает, какой максимально допустимый ток может  быть отключен устройством. По принятым нормативам для бытовой проводки этот параметр должен соответствовать 6000 ампер, его отображение производится на лицевой панели устройства так, как это показано ниже.

Иногда на цепь освещения и группы розеток устанавливаются автоматы, ПКС (предельно коммутирующая способность) которых 4500 А.  Насколько это допустимо, зависит от нагрузки, но согласно европейскому стандарту, у бытовых УЗО ПКС должно быть как минимум 6000 А.

Производители и ценовые категории

Учитывая, как много зависит от надежности УЗО, рекомендуется приобретать устройства, производящихся под известными брендами. Стоимость таких автоматов будет несколько дороже, чем у китайских аналогов, заявленные характеристики которых не соответствуют действительности.

Необходимо заметить, что внешний вид контрафактной продукции может практически не отличаться от оригинальной, поэтому лучше производить закупку у сертифицированных дилеров. В противном случае существенно возрастает риск приобретения товара, не отвечающем заявленным характеристикам.

Надежность работы электропроводки напрямую зависит от автоматических выключателей, поэтому не рекомендуется экономить на этих защитных устройствах.

Список литературы

  • Пищур А. П. «Современные автоматические выключатели»  2012
  • Харечко Ю. В. «Защитные устройства модульного исполнения» 2008
  • А.В. Кабышев, Е.В. Тарасов «Низковольтные автоматические выключатели» 2011

Автоматические выключатели

— как это работает: необходимость в электронных автоматических выключателях

Автоматический выключатель — необходимость и определение

Электроэнергия, поступающая в наш дом или любые другие места от распределительных сетей, образует большую цепь с линиями, соединенными с электростанцией. один конец называется горячим проводом, а линии, соединяющиеся с землей, образуют другой конец. Электрический заряд протекает между этими двумя линиями, и между ними возникает потенциал. Подключение нагрузок (приборов), оказывающих сопротивление этому потоку заряда, замыкает полную цепь, и вся электрическая система внутри дома работает бесперебойно, пока приборы имеют достаточное сопротивление и не вызывают перегрузки по току.Короткое замыкание или слишком большой заряд, протекающий по цепи, или внезапное подключение горячего конца провода к заземляющему проводу может нагреть провода, что приведет к пожару. Для предотвращения таких ситуаций используется защита цепи, которая просто отключает оставшуюся цепь в таких условиях.

Как правило, есть два способа решения этой проблемы:

Предохранитель . : Он состоит из тонкой проволоки, заключенной в кожух. В случае чрезмерного тока предохранительный провод просто сгорает или разрушается, вызывая разрыв цепи.Однако они ненадежны, и предохранительный провод необходимо заменять вручную, если он перегорел. Таким образом, они в основном не являются предпочтительными.

Выключатели : Другой способ защиты цепи — это обеспечение прекращения протекания тока или прекращения подачи напряжения в линию в случае перегрузки по току. Это осуществляется автоматическим срабатыванием переключателя, который срабатывает при обнаружении перегрузки по току или любой неисправности, таким образом изолируя линию повреждения от всей цепи и снова может быть включен для восстановления работы.Это более выгодно, так как позволяет быстро идентифицировать зону разлома и быстро восстановить. Он также электрически безопасен по сравнению с предохранителем.

Электронный предохранитель

Прежде чем мы углубимся в подробности электронного автоматического выключателя, давайте взглянем на электронный предохранитель.

Номинальное напряжение реле должно быть равным приложенному напряжению, следует использовать конденсатор 100 мкФ, а ток, проходящий через цепь, можно регулировать с помощью потенциометра 100 кОм.Если используется предохранитель, значение R2 следует уменьшить. В то время как SW1 включен, он подключает L2 к цепи, следовательно, ток на резисторе R2 увеличивается, вызывая более высокое падение напряжения на R2.

Восстанавливаемый электронный предохранитель — принципиальная схема:

Через предустановленные 100K и R1 это напряжение запускает SCR U1, который управляет реле RL1. Это отключает питание нагрузки и одновременно прекращает подачу питания на SCR. Следует устранить перегрузку, выключить sw2 и снова включить его для сброса.Любой тиристор может использоваться для удовлетворения требований по напряжению и запуску затвора.

Потребность в электронном автоматическом выключателе

Традиционный миниатюрный автоматический выключатель состоит из биметаллической ленты для защиты от тока нагрузки и электромагнита для защиты от тока короткого замыкания. В случае перегрузки биметаллическая полоса изгибается, вызывая отпускание пружины с перемещением точки фиксации и, в конечном итоге, размыкание контактов MCB. Электромагнитная катушка создает на ней магнитодвижущую силу, когда через нее протекает большой ток, что приводит к смещению точки фиксации, и это снова размыкает контакты MCB.Таким образом, в случае перегрузки и короткого замыкания MCB отключается.

Однако у этого обычного миниатюрного автоматического выключателя есть несколько недостатков:

  • Они довольно дороги, и чем больше ток короткого замыкания, тем выше стоимость MCB.
  • Биметаллическая полоса имеет тенденцию легко деформироваться из-за тепла или повышения температуры окружающей среды, что приводит к снижению допустимой токовой нагрузки выключателя.
  • Из-за использования механических компонентов они более подвержены износу.
  • Время срабатывания меньше.

Для решения всех этих проблем наиболее удобным решением является использование электронного автоматического выключателя или автоматического выключателя с электронным управлением автоматическим выключателем. Он не включает в себя электромагнитную катушку, термопленку или механический компонент.

Определение электронного автоматического выключателя

Электронный автоматический выключатель состоит из автоматически срабатываемого переключателя, управляемого обратной связью от нагрузки.Это основано на том факте, что в момент, когда ток слишком большой потребляется нагрузкой или слишком сильно протекает в линии, переключатель автоматически замыкается на некоторое время, а затем переключатель автоматически включается по прошествии определенного времени. . Переключатель может быть силовым электронным переключателем, таким как SCR, или электромеханическим переключателем, например реле, который управляется любым элементом, чувствительным к току, например резистором. Это сверхбыстрое устройство отключения цепи использует последовательный резистор для измерения тока, и, когда он превышает установленное значение, соответствующее падение напряжения (на последовательном сопротивлении) также увеличивается.Это напряжение измеряется, выпрямляется до постоянного тока, а затем сравнивается с предварительно установленным напряжением компаратором для генерации выходного сигнала, который управляет реле через полевой МОП-транзистор для мгновенного отключения нагрузки. Механизм отключения очень быстрый, поскольку он основан на принципах измерения тока, а не на тепловых механизмах отключения, таких как MCB. Микроконтроллер может использоваться для отображения на ЖК-дисплее состояния автоматического выключателя.

Таким образом, с помощью этого устройства можно добиться сверхбыстрого отключения цепи, чтобы уберечь дорогостоящее оборудование от возможных повреждений.Используя эту уникальную концепцию, можно разработать прототип как проектную работу для студентов-электротехников.

Электронный автоматический выключатель работает по принципу механизма измерения тока. Он обеспечивает защиту как от перегрузки, так и от короткого замыкания, так как в любом случае контролируется ток в линии, и переключатель срабатывает в случае протекания сверхтока.

Рабочий пример простого электронного автоматического выключателя

Три правила работы схемы | EAGLE

Приветствую новых инженеров.Это прекрасное место для начала, с простой схемы, которая является строительным блоком для каждого элемента электроники в нашем мире. Когда вы полностью поймете это, вы будете готовы начать собственное путешествие по их разработке и устранению неисправностей.

Строительные блоки схемы

Перед тем, как погрузиться в полную схему, разумно сначала поразмыслить над отдельными частями, составляющими единое целое, такими как поток, нагрузка и проводимость. Мы разбили эти принципы на три основных правила:

  • Правило 1 — Электричество всегда будет течь от более высокого напряжения к более низкому.
  • Правило 2 — У электричества всегда есть работа, которую нужно сделать.
  • Правило 3 — Электричество всегда требует дороги.

Правило 1. Все дело в потоке

Для каждой электронной схемы нужен источник питания, будь то батарея AA, которую можно вставить в контроллер Xbox One, или что-то с большей силой, например настенная розетка, которая может питать большое количество устройств. Электричество, исходящее от этих источников, измеряется напряжением, вольтами или просто В.

Да, мы говорим о таком напряжении! Когда он достаточно высок, он может нанести серьезный ущерб.

Независимо от того, откуда эта энергия течет, ее цель всегда одна — переходить из одной области в другую и в процессе выполнять некоторую работу, например, заряжать компьютер или включать свет.

Фундаментальным компонентом этого потока энергии является то, что всегда будет течь электричества от более высокого напряжения к более низкому.Всегда. Это называется потенциалом . Можно сказать, что это потенциальное электричество, которое должно перемещаться из одного района в другой.

Поток высокого (положительного) напряжения в низкое (отрицательное) напряжение.

Как это соотносится с нашим реальным миром? Возьмем для примера простую батарею:

  • Батарея имеет две стороны: отрицательная сторона — это низкое напряжение, измеряемое при 0 В, положительная сторона — это высокое напряжение, измеряемое при 1,5 В.
  • Энергия всегда будет вытекать из положительной стороны батареи, чтобы перейти к отрицательной стороне, чтобы найти баланс.
  • Для этого он должен протекать по чему-то, обычно по медному проводу, и в процессе выполнять некоторую работу, например включать свет или вращать двигатель.

В конце концов, все электричество хочет найти равновесие на земле (0 В). Единственный способ сделать это в батарее — сместить положительный полюс на отрицательный. Мы извлекаем выгоду из этого естественного стремления к энергии, размещая некоторые объекты так, чтобы они проходили через них, что позволяет нам включать свет, силовые двигатели, а также включать и выключать транзисторы в компьютере.

Все это составляет Правило 1 — Электричество всегда будет хотеть течь от более высокого напряжения к более низкому напряжению. Запомните это; это никогда не изменится.

Правило 2 — Приступая к работе

Итак, у вас может быть электричество, которое хочет перетекать с более высокого напряжения на более низкое, но какой в ​​этом смысл? Единственная причина заставить электричество течь — это немного поработать. Этот процесс, когда электричество выполняет работу в цепи, называется нагрузка .Без нагрузки или работы с электричеством нет смысла иметь цепь. Нагрузка может быть чем угодно, например:

  • Spinning Двигатель, который вращает пропеллеры дрона.
  • Включение светодиода на кабеле для зарядки, чтобы указать, что ваш ноутбук подключен к сети.
  • Подключение гарнитуры к ноутбуку по беспроводной сети для прослушивания музыки.

В это время года электрическая нагрузка бывает разных форм, одна из которых питает эти светодиоды.(Источник изображения)

Обратите внимание, что все эти нагрузки являются действиями. Электричество всегда заставляет происходить что-то физическое, даже если мы не можем увидеть это собственными глазами. Но почему это называется нагрузкой? Вы можете думать об этом как об обузе для всего, что питает вашу схему. Для вращения двигателя требуется электричество, а это забирает у вашего источника питания энергию, которая раньше была у него.

Помните Правило 2 — У электричества всегда есть работы, которые нужно выполнить . Без работы схема бесполезна.

Правило 3 — Следование по пути

Третье и последнее правило — это то, что делает возможными первые два правила — электричеству нужен путь для передвижения. Этот путь действует как своего рода посредник. Допустим, вы подключаете зарядное устройство ноутбука к розетке, а затем к ноутбуку. Очевидно, он заряжается, но без этого шнура между компьютером и розеткой ничего бы не произошло.

Это потому, что электричеству нужен путь, по которому можно добраться из одного пункта назначения в другой.И путь всегда один и тот же:

  • Электроэнергия — Электричество всегда исходит от источника, например батареи или розетки.
  • Journey — Затем он путешествует по тропе, выполняя свою работу по пути.
  • Назначение — Затем он прибывает в конечный пункт назначения, находя покой в ​​точке с самым низким напряжением.

Этот путь, по которому проходит электричество, состоит из так называемого проводящего материала, который состоит из обычных металлов, таких как медь, серебро, золото или алюминий.Электроэнергетика любит ездить на этой фигне. Электричество также очень избирательно, и оно не мешает путешествовать по дорожкам, сделанным из индуктивных материалов. Сюда входят такие вещи, как резина, стекло и даже воздух.

Видите все эти медные провода? Электричество любит путешествовать по этому проводящему материалу.

Помните Правило 3 — Электричеству всегда нужен путь, чтобы пройти по . Без пути он никуда не денется.

Собираем все вместе — полная схема

Давайте теперь объединим все эти правила в полное определение схемы.

Цепь — это просто путь, по которому может течь электричество.

И с помощью этой простой концепции мужчины и женщины построили безумно сложные цепи, которые отправили человечество в космос и в глубины наших глубочайших океанов. А пока постараемся упростить задачу и составим нашу первую схему. Вот что вам понадобится, если вы хотите продолжить:

  • (1) аккумулятор 9 В
  • (1) Резистор 470 Ом
  • (1) Стандартный светодиод
  • (3) Измерительные провода с зажимами типа «крокодил»

Шаг 1 — Добавление источника питания

Возвращаясь к нашему правилу трех, первое гласит, что электричество всегда будет течь от более высокого напряжения к более низкому.Итак, это означает, что нам нужен какой-то источник питания в этой цепи, мы добавим нашу батарею на 9 В.

Начало нашей схемы начинается с батареи 9 В.

Правило 1 теперь выполнено. У нас есть какой-то источник питания, у которого высокое напряжение на положительном конце (+) и 0 В на отрицательном конце (-). Но все это электричество будет потрачено зря, если мы не будем с ним что-то делать, поэтому давайте дадим ему немного работы (нагрузку).

Шаг 2 — Добавление работы

Теперь мы хотим, чтобы электричество поработало за нас, прежде чем оно успокоится, поэтому давайте включим простой светодиод.Скорее всего, вы видели их повсюду: на вашей елке, фонариках, лампочках и т. Д. Итак, мы возьмем этот светодиод и поместим его с другой стороны нашей батареи.

Теперь о светодиодах следует упомянуть то, что они действительно чувствительны и не могут пропускать слишком много энергии, поэтому нам нужно добавить так называемый резистор. Мы не будем вдаваться в подробности сейчас, но просто знаем, что резистор будет действовать, как сказано в его названии, — сопротивляться потоку электричества, достаточному для того, чтобы наш светодиод справился с ним. Разместим резистор слева от светодиода.

Добавляем немного работы в нашу схему с помощью светодиода и резистора.

Отлично, Правило 2 выполнено, и у нашего электричества есть над чем поработать. Но у него нет возможности завершить свою работу без пути, давайте добавим это сейчас.

Шаг 3 — Предоставление пути

Эта деталь проста, нам просто нужно соединить наши зажимы типа «крокодил» между всеми компонентами нашей схемы. Если вы все сделаете правильно, то ваш светодиод будет ярко светить! Помните, что при подключении проводов к батарее всегда подключайте сначала положительный конец, а затем отрицательный.Посмотрите на картинку ниже, чтобы увидеть, как все это должно быть связано вместе.

Теперь у нашего электричества есть проход с добавленными зажимами из крокодиловой кожи

Типы цепей

Теперь, прежде чем вы убежите в дикую природу и построите свои собственные схемы, вам нужно знать о двух способах описания схемы, один из которых может испортить жизнь вашей схемы, они включают:

Замкнутый или открытый контур

Цепь считается замкнутой цепью , когда есть полный путь, по которому может проходить электричество.Это также называется полной схемой. Теперь, если ваша цепь не работает должным образом, это означает, что это разомкнутая цепь . Это может быть вызвано несколькими причинами, включая неплотное соединение или обрыв провода.

Вот простой и наглядный способ понять разницу между замкнутой и разомкнутой цепями. Посмотрите на схему ниже и обратите внимание, что это та же самая цепь, которую мы создали выше, только теперь в ней есть переключатель.

Вот схема цепи, которую мы сделали выше.Обратите внимание на добавление переключателя.

Прямо сейчас переключатель поднят, и вы увидите, что электричество не имеет плавного пути, так как переключатель разрывает соединение. Это разомкнутая цепь. Но что будет, если щелкнуть выключателем?

Теперь наш выключатель срабатывает, замыкая цепь, позволяя электричеству течь к нашему светодиоду!

Ага! Теперь вы только что проложили полный путь для вашего электричества, и ваш светодиод включится! Это замкнутая схема.

Короткое замыкание

Тогда есть короткое замыкание . Если вы не даете своей схеме никакой работы, но все же обеспечиваете некоторую мощность, приготовьтесь к некоторым проблемам. Посмотрите на нашу схему ниже, мы вынули светодиод, резистор и переключатель, оставив только медный провод и батарею.

Вот цепь, которая скоро превратится в короткое замыкание! Без какой-либо работы эта батарея скоро сгорит.

Если мы соединим эту штуку вместе в ее физической форме, то аккумулятор и провод станут очень горячими, и в конечном итоге батарея разрядится.Почему так происходит? Когда вы даете электричеству некоторую работу в цепи, такую ​​как зажигание светодиода или вращение двигателя, это ограничивает количество электричества, которое будет проходить через вашу цепь.

Но в ту минуту, когда вы убираете из своей цепи любую работу, электричество сходит с ума и бежит по своему пути на полной скорости, и ничто не сдерживает его. Если вы позволите этому случиться в течение длительного периода времени, то обнаружите, что у вас поврежден блок питания, разряженная батарея или, может быть, что-то еще хуже, например, пожар!

Ух ты! Не пытайтесь делать это дома.Вот здоровенная батарея фонаря на 12 В, замкнутая во имя науки. (Источник изображения)

Итак, если вы когда-либо работали с цепью, и ваш провод или батарея сильно нагреваются, тогда немедленно выключите все и ищите любые короткие замыкания.

Ты теперь опасен

Итак, молодой мастер электроники, теперь у вас есть вся информация, необходимая для управления скромной схемой. Поняв, как работает схема, вы скоро сможете выполнять проекты любых форм и размеров.Но прежде чем начать собственное путешествие, запомните Руководящее правило троек:

.

  • Правило 1 — Электричество всегда будет течь от более высокого напряжения к более низкому.
  • Правило 2 — У электричества всегда есть работа, которую нужно сделать.
  • Правило 3 — Электричеству всегда нужен путь.

И если ваша схема когда-нибудь станет очень горячей, выключите ее! У вас короткое замыкание.

Готовы построить свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно.

Основные сведения об основном автоматическом выключателе в вашем доме

Выполнение электрического ремонта в вашем доме требует, чтобы вы знали, как использовать главный автоматический выключатель. Главный автоматический выключатель вашего дома контролирует распределение электричества в каждой комнате. Автоматический выключатель управляет соединением между вашим домом и вашей коммунальной компанией.

Коммунальная компания подает электроэнергию в ваш дом через линию электропередачи. Электроэнергия от вашего сервисного центра никогда не отключается, но ваш автоматический выключатель может остановить поток энергии в ваш дом.Итак, все необходимое для выполнения электромонтажных работ или восстановления питания после перегрузки находится в коробке выключателя.

Эта статья представляет собой полное руководство для понимания главного автоматического выключателя в вашем доме. Пошаговое справочное руководство, которое научит вас всему, что вы видите, когда смотрите на блок выключателя. И узнайте разницу между главным выключателем и выключателем ответвления.

Это руководство предназначено только для образовательных целей. Перед тем, как выполнять какой-либо ремонт электрооборудования самостоятельно, всегда следует проконсультироваться с профессиональным электриком поблизости.

Полное руководство по основным автоматическим выключателям для начинающих

Главный автоматический выключатель находится на распределительной коробке электрооборудования. Если вам интересно, где он находится в вашем доме, поищите коробку электрического щита в подвале или гараже. Иногда они находятся рядом с водонагревателем или рядом с прачечной.

В квартирах и некоторых старых зданиях служебная панель встроена в стену. Это похоже на металлическую дверцу шкафа, и ее сначала сложно открыть.Когда вы открываете дверцу панели, вы видите ряд или два автоматических выключателя.

Выключатели могут быть пронумерованы, а если у вашего дома был предыдущий владелец, они могут быть даже помечены. Это ваши автоматические выключатели ответвления. Каждый выключатель ответвляется в какую-то область, например, коридор наверху, гостиную или подвал.

Посмотрите над выключателем ответвления и вы увидите другой переключатель, который больше, чем выключатели ответвления. Это ваш главный автоматический выключатель, который контролирует поток мощности к вашему выключателю ответвления.

Главный выключатель автоматического выключателя обычно обращен перпендикулярно выключателям ответвления. Иногда это выглядит как три или четыре выключателя вместе с одним выключателем включения / выключения. Выключите главный выключатель, и на панель выключателя не поступает питание.

Что такое автоматический выключатель?

Автоматические выключатели — это средство защиты от повреждения цепи в случае перегрузки по току. Другими словами, он гарантирует, что ничего не сломается, если у вас одновременно будет слишком много приборов, что приведет к короткому замыканию.

Автоматический выключатель сам по себе является электрическим выключателем. Он подключается к печатной плате и прерывает прохождение электрического тока, если обнаруживает неисправность в потоке. В случае неисправности автоматический выключатель автоматически срабатывает и прекращает прохождение электричества по цепи.

Автоматические выключатели

созданы в соответствии со спецификациями безопасности, чтобы гарантировать, что короткое замыкание не приведет к повреждению дома или здания. Раньше автоматические выключатели при скачке напряжения заменяли перегоревший предохранитель.

Предохранители

также защищают от возгорания, но только один раз, после чего необходимо заменить перегоревший предохранитель. С автоматическим выключателем все, что вам нужно сделать, это отключить некоторые приборы, которые вызвали скачок напряжения, и вернуть выключатель в положение «включено».

Автоматические выключатели

работают настолько хорошо, что бывают самых разных размеров и типов. Практически все автоматические выключатели для жилых помещений — низковольтные. В многоквартирном доме используется выключатель среднего напряжения, а выключатель высокого напряжения предназначен для коммунальных предприятий, которые снабжают электроэнергией весь город.

Как работает автоматический выключатель?

Различные типы автоматических выключателей работают по-разному, но каждый автоматический выключатель выполняет одинаковую функцию. Другие факторы, влияющие на способы работы выключателей, включают класс напряжения и номинальные значения тока.

По своей сути автоматический выключатель обнаруживает неисправности в протекании тока в цепи и прерывает подачу энергии в цепи. Когда электрический ток проходит через два контакта, требуется значительная сила, чтобы разъединить соединение.По этой причине цепь должна быть разорвана силой, чтобы остановить передачу электричества.

Низковольтные автоматические выключатели на электрическом щите вашего дома — это простейшие типы автоматических выключателей. Они используют накопленную в пружине энергию для включения переключателя и разъединения контакта с цепью. Это позволяет вручную отключать и сбрасывать подачу питания щелчком переключателя.

Внутри контактов выключателя для подачи электричества. Они должны передавать нагрузку без перегрева из-за скачков напряжения или дуги.Слишком большой ток или высокая температура приводят к срабатыванию параметров неисправности и срабатыванию выключателя.

Дуга возникает, когда подача тока прерывается при срабатывании выключателя. Дуга очень горячая и разъедает контактный материал в цепи. Когда контакты выходят из строя, соединение должно быть разорвано — отсюда и название.

Контакты схемы изготовлены из металлов с высокой проводимостью, таких как сплав меди и серебра. Чем выше напряжение, тем дольше возникает дуга при разрыве соединения.Чем сильнее ток, тем горячее дуга при срабатывании выключателя.

Итак, выключатели и цепи согласованы, чтобы не превышать допустимые параметры тока и напряжения. В случае перегрузки цепи автоматический выключатель срабатывает с достаточной силой, чтобы разорвать текущее соединение и последующую дугу.

Автоматический выключатель прерывает электрическое соединение, если контакты сохраняют избыточное тепло или ток. Как только обнаруживается неисправность, выключатель срабатывает.Для восстановления прохождения тока прерванный контакт должен быть замкнут путем сброса выключателя.

Все автоматические выключатели предназначены для прерывания соединения между контактами цепи. Однако есть разница между автоматическим выключателем ответвления и главным выключателем.

Разделительный выключатель против главного прерывателя

Прерыватели ответвлений и главный прерыватель — это, по сути, одно и то же, но не совсем. Они работают одинаково, но прерыватели ответвлений меньше.Главный выключатель предназначен для отключения нагрузки с большей силой тока.

Две линии электропередач, которые подводят электричество к вашему дому, проходят через сервисную панель. Каждый из основных проводов передает 120 вольт электричества, что в сумме составляет 240 вольт. Главный прерыватель подключается непосредственно к этим двум проводам.

Под главным выключателем два провода подключаются к двум электропроводящим шинам, называемым шинами горячего питания. К горячим шинам прикрепляются отдельные автоматические выключатели ответвления, поэтому они часто отображаются в виде двух параллельных рядов.

Главный автоматический выключатель контролирует поток электричества от двух основных проводов к шинам горячей шины. Срабатывание главного выключателя прерывает подачу электричества на 240 В до того, как оно достигнет выключателей вашей ветви. Когда срабатывает главный выключатель, все в вашем доме выключено.

Как выполнить отключение системы главного автоматического выключателя

Если вам необходимо провести в вашей системе серьезные электромонтажные работы, используйте главный выключатель в качестве отключения системы. Не отключайте сразу главный автоматический выключатель.Во-первых, начните с верхней части прерывателя ответвления и отключите каждый прерыватель по отдельности.

Если вы уверены, что успешно отключили каждый выключатель ответвления, по одному, выполните отключение системы, переведя главный выключатель цепи в положение «выключено». Электроэнергия должна быть отключена на всей вашей собственности.

После того, как вы закончите работу и будете готовы снова включить питание, повторите процесс в обратном порядке. Перед включением автоматических выключателей ответвления переведите главный автоматический выключатель в положение «включено».Затем не торопитесь, по очереди вставляя каждый прерыватель ветвей.

Вы не хотите создавать скачок напряжения, предъявляя слишком высокие требования к вашей электрической системе одновременно. Так что делайте несколько секунд между каждым прерывателем ветки.

Как всегда, мы настоятельно рекомендуем обратиться к лицензированному электрику перед выполнением собственных электромонтажных работ.

Как сбросить сработавший главный автоматический выключатель

Главный автоматический выключатель может отключиться по нескольким причинам.Если энергокомпания вызовет скачок напряжения, она может отключить главный выключатель в каждом доме на улице. Неисправный прерыватель ответвления может вызвать срабатывание главного прерывателя в качестве дополнительной меры предосторожности.

Если сработал главный автоматический выключатель, вы должны правильно его сбросить, чтобы избежать скачка напряжения в вашей системе. Когда питание будет восстановлено, любой включенный выключатель ответвления включит приводной двигатель цепи. Если все двигатели включаются одновременно, это создает нагрузку на вашу систему и увеличивает вероятность короткого замыкания.

Прежде чем пытаться сбросить главный выключатель, наденьте защитные очки и перчатки. Иногда при повторном включении главного выключателя могут разлетаться искры. И стойте в стороне всякий раз, когда переворачиваете выключатели, чтобы избежать искр на лице.

Когда срабатывает ваш главный прерыватель, начните с перевода каждого отдельного прерывателя ответвления в положение «выключено». Когда все выключатели выключены, снова включите главный выключатель. Электропитание должно оставаться выключенным, поскольку выключатели ответвления отключены.

Теперь медленно включайте выключатели ответвлений по одному, чтобы избежать перегрузки.Каждый раз, когда вы переводите выключатель ответвления обратно в положение «включено», питание должно возвращаться в области вашего дома, контролируемые этой цепью.

Главный автоматический выключатель не должен срабатывать легко, и каждый раз, когда он срабатывает, соединения ослабевают. Если вы испытываете частые срабатывания главного выключателя, обратитесь за помощью к профессиональному электрику. Это может указывать на серьезную проблему с электрической системой или неисправную проводку в вашем доме.

Зачем вам главный автоматический выключатель?

Главный автоматический выключатель обеспечивает надежную меру безопасности.Без главного автоматического выключателя вы полагаетесь на то, что каждый из ваших выключателей ответвления выдержит гораздо большую нагрузку, чем они предназначены. А отключение электричества во всем доме пригодится, когда вы выполняете какие-либо электромонтажные работы.

В случае, если какая-либо отдельная ответвительная цепь потребляет слишком много энергии, она должна просто отключить прерыватель ответвления. Но если слишком много автоматических выключателей потребляют слишком много энергии, главный автоматический выключатель защитит вас от опасной перегрузки.

Очень важно отключать электроэнергию в вашем электрическом шкафу, когда вы выполняете электромонтажные работы дома. Разрезать провод под напряжением — это ошибка, которую нельзя повторить дважды, потому что у вас не будет возможности. Независимо от того, устанавливаете ли вы дорожное освещение или устанавливаете дополнительные розетки, главный автоматический выключатель защитит вас от поражения электрическим током.

Ни один из ваших автоматических выключателей не должен отключаться регулярно. Если вы обнаружите, что регулярно переустанавливаете выключатель, возможно, пришло время обновить электрическую панель.

Последние мысли

Распределительную систему вашего дома легко понять, если вы понимаете, как взаимодействуют ваши автоматические выключатели. Главный выключатель обеспечивает аварийное отключение, чтобы гарантировать, что отказ выключателя ответвления не приведет к перегрузке системы. Взгляните на свой автоматический выключатель дома, и вы увидите, насколько физически электричество течет внутри ваших стен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*