Как правильно подключить биметаллическую батарею: как подключить батареи правильно, соединение труб

Содержание

Как установить и подключить биметаллический радиатор отопления

Установка биметаллических радиаторов покажется сложной человеку, незнакомому с трубопроводными фитингами и разводными ключами. В случаяе, когда требуется просто заменить старую чугунину на биметалл без переваривания отводов, можно попробовать сделать все это своими руками.

Как сделать это квалифицированно и красиво, вы можете узнать, ознакомившись с приведенным ниже материалом.

Конструктивные особенности биметаллических радиаторов

Эти красивые отопительные приборы появились в обиходе одновременно с понятием евроремонта. Соединяя в себе достоинства стали и алюминия, они отличаются большим запасом прочности, выдерживают до 40 атм давления и в разы превосходят стальные и чугунные радиаторы по теплоотдаче.

Внутренние магистрали циркуляции теплоносителя у них из стали, а ребристая рубашка, передающая тепло в помещение из окрашенного порошковой краской алюминия. Поэтому они долговечны, удобны в монтаже и красивы.

Особенно популярны секционные приборы, с ниппельным соединением секций, удобные тем, что количество секций можно привести в соответствие с вашими потребностями.

Как правильно рассчитать количество секций?

Самая известная формула для расчета необходимого числа ребер:

K=S(100/R)

В ней:

  1. S – площадь комнаты;
  2. Тепловая R – мощность секции;
  3. K – число ребер.

К примеру, в помещении площадью 22 метра, по этой формуле потребуется 12-секционный радиатор, с тепловой мощностью одной секции 175 Вт.

Некоторые считают проще, исходя из расчета одной такой секции, на два м.кв. Формулы можно применять для помещений, с высотой меньше трех метров.

В отдельных случаях при расчетах применяются поправочные коэффициенты:

  • Для угловых комнат умножают количество секций на 1,2;
  • Если комната остеклена энергосберегающими стеклопакетами, применяют такой же понижающий коэффициент;
  • В комнатах с несколькими окнами, радиаторы ставят под каждым окном, разделяя общую потребность в секциях на количество окон.

Инструменты для монтажа и арматура

Для качественной сборки и установки секционного радиатора потребуются следующие материалы и арматура:

  • Определенное расчетом количество секций;
  • Четыре проходные пробки, с резьбовым отверстием на 3/4 дюйма. Они могут быть с правой или левой резьбой в зависимости от способа врезки и положения радиатора относительно отопительного стояка;
  • Кран Маевского и заглушка;
  • Регулировочные краны на 3/4 дюйма;
  • Две «американки», как называют мастера паковочные резьбовые переходы, такого же диаметра;
  • Сантехнический лен и герметик, для резьбовых соединений;
  • Крепежные кронштейны с дюбелями.

Необходимо подготовить специальный инструмент:

  • Ниппельный ключ, соответствующей конфигурации;
  • Набор разводных и рожковых ключей;
  • Зажимные универсальные клещи;
  • Уровень и рулетка;
  • Перфоратор.

Схемы и варианты установки

Варианты установки биметаллических радиаторов не отличаются от любых других. Наиболее популярные схемы подключения:

  • Боковое подключение выбирают для стояковой системы отопления, используемой в многоэтажных домах. Обычно отвод с подающего стояка соединяется с верхом радиатора, а обратка принимает теплоноситель снизу;
  • В частных, одно и двух-этажных домах получила распространение горизонтальная система разводки труб отопления, называемая “Ленинградской”. Согласно ей можно вводить подачу в верхнюю пробку радиатора, а выводить из нижней, диаметрально противоположной. Этот способ установки наиболее оптимален с точки зрения циркуляции теплоносителя через регистры;
  • В качестве варианта Ленинградской системы допускается производить подачу и выход теплоносителя в нижние пробки радиаторов.

Этапы монтажа

Установку и подключение биметаллической батареи можно разбить на четыре этапа:

  • Начинать следует со сборки батареи. Ниппеля с прокладками чуть наживляют в резьбах осевых отверстий одной блок секции и приставляют к ним еще одну секцию или блок из нескольких. У ниппеля с каждой стороны своя резьба. Поэтому, когда мы начинаем крутить его ниппельным ключом, он плотно стягивает секции, а прокладка герметизирует стык;
  • Затем производим укрупненную сборку фитингов. В проходные гайки, две левых и две правых, пакуем заглушку, кран Маевского, и резьбы американок. Герметизация заглушки и крана Маевского обеспечивается уплотнительными резиновыми кольцами. Американка пакуется на сантехнический лен, увлажненный олифой или герметиком;
  • Установка оборудованных уплотнительными кольцами проходных гаек не вызывает затруднений. Нужно запомнить, что кран Маевского предназначен для спуска воздуха и обязательно располагается вверху. Расположение остальных фитингов зависит от схемы подключения;
  • Чтобы подогнать батарею под существующие отводы, необходимо, подставив ее в рабочее положение, наметить место хотя бы одного кронштейна. Остальные размечаем с помощью линейки и уровня, перенося размеры с радиатора на стену. Кронштейны должны быть с резьбой и дюбелями. Тогда можно будет регулировать расстояние батареи от стены. Это делается поворотами кронштейна по, или против часовой стрелки.

Какой теплоноситель подходит для биметаллических радиаторов?

Внутренности у рассматриваемых приборов стальные и они пригодны для воды, но могут использоваться с любыми типами незамерзающих жидкостей, тосолов и антифризов, многие из которых способны защищать металл от коррозии.

Можно ли нарастить биметаллические радиаторы?

Удобно наращивать секции батареи при стояковой системе. Для этого:

  • Выкручиваем проходные гайки с заглушкой и краном Маевского;
  • Наживляем ниппеля с прокладками в открывшиеся отверстия;
  • Приставляем дополнительный блок секций и орудуя ниппельным ключом. стягиваем секции в единую конструкцию;
  • В случае с Ленинградской системой, придется снимать радиатор, скручивать секции на полу, а потом переваривать трубную подводку.

Распространенные проблемы, почему не греют биметаллические радиаторы?

У биметаллических приборов нет особенных причин не нагреваться. Но, всё-таки, в них перестает циркулировать теплоноситель:

  • Они засоряются грязью, поступающей с теплотрассы недобросовестного поставщика тепла;
  • В них скапливается воздух, что легко устраняется краном Маевского;
  • Котельная не поддерживает требуемые параметры температуры и давления теплоносителя;
  • На трубах накапливается накипь и ржавчина.

5
/
5
(
18

голосов
)

Подключение биметаллических радиаторов отопления — инструкция

Автор Монтажник На чтение 16 мин Просмотров 13.2к. Обновлено

Радиаторное отопление — основной вид обогрева помещений в индивидуальных домах и коммунальных квартирах. Многие собственники при организации отопительной системы в своих домах используют подключение биметаллических радиаторов отопления к различному типу котлов.

При выборе из нескольких видов радиаторов, предлагаемых в торговой сети широком рядом производителей, потребителю полезно знать их конструктивные отличия. Немаловажным фактором при принятии решений являются технические характеристики радиаторных теплообменников, области их применения и варианты подключения к системе отопления.

Рис. 1 Подключение биметаллических радиаторов отопления разными способами

Виды и особенности радиаторов отопления

В торговой сети покупателю предлагают на выбор широкий ряд теплообменных радиаторов из различных материалов разнообразных форм. По материалам изготовления их все разбивают на следующие группы.

Чугунные

Чугунные батареи относят к классическим, в отличие от своих предшественников, современные изделия окрашивают в различные цвета и придают им эстетичный внешний вид. Вторую жизнь радиаторы из чугуна получили как элементы декора для подчеркивания дизайнерского ретро-стиля.

Отлитые секции батарей имеют рисунок, устанавливаются на ножки и окрашивается в подходящие к цветовой гамме помещений или стиля цвета.

Особенностями чугунных радиаторов являются их большой вес, высокая тепловая емкость, возможность изменять количество секций, соединяемых друг с другом ниппелями. Чугун обладает довольно высокой коррозионной устойчивостью и может эксплуатироваться около 50 лет, он выдерживает давление до 50 бар (низкопробный китайский может разорвать и при 20 — 30 барах) и высокие температуры жидкого или парообразного теплоносителя до + 120 °С. Из-за относительно невысокой теплопроводности, тепловая мощность одной чугунной секции составляет 140 — 150 Ватт.

Самые известные производители батарей из чугуна: российская фирма Нова (выпускает бюджетные варианты), компании Viadrus, Konner, Bohemia с более высокими ценами на свой товар.

Рис. 2 Дизайнерские батареи из чугуна

Алюминиевые

Теплообменники из алюминия, точнее его сплава с кремнием (силумина) на сегодняшний день занимают лидирующее положение по использованию в любых отопительных системах. Они изготавливаются в виде отдельных алюминиевых секций, внутри которых созданы проходные каналы для циркуляции теплоносителя.

Методы промышленного производства алюминиевых радиаторов — литье и экструзия.

Основные физическое и эксплуатационные характеристики теплообменников из алюминия: легкий вес, теплоотдача одной стандартной секции 80 на 80 мм — около 180 Вт, максимальное давление теплоносителя 10 — 15 бар у дешевых изделий и до 50 бар у дорогих итальянских, температура рабочей среды не более 115 °С. Благодаря высокой теплопроводности и низкой тепловой емкости с их помощью можно быстро прогреть помещение.

К недостаткам радиаторных теплообменников из алюминия относят невысокие для определенных условий эксплуатации прочностные характеристики (силумин, в отличие от чистого алюминия — хрупкий сплав). Также алюминиевые радиаторы обладают низкой коррозионной устойчивостью при эксплуатации их в рабочей среде с высоким или слишком низким водородным показателем рН.

Если рН теплоносителя превышает диапазон 7 — 8 единиц в сторону увеличения или уменьшения, происходит разрушение защитной оксидной пленки Al2O3 на поверхности металла, придающей ему антикоррозионную стойкость.

Рис. 3 Устройство секции алюминиевого радиатора

Металл постоянно образуют новую защитную пленку взамен разрушенной, при этом его слой постепенно истончается до образования свища. Также процесс появления нового оксида сопровождается выделением водорода Н2, еще более ускоряющего разрушение алюминия.

Если потребитель оставил воду в радиаторах алюминиевого теплообменника на лето, появление водорода из образования оксидной пленки и жизнедеятельности бактерий может привести даже к разрыву секций закрытой батареи.

Алюминиевые теплообменники не рекомендуется устанавливать в централизованную систему отопления из-за невозможности контролировать рН.

Лучшие производители таких радиаторов — итальянские компании Green, Sira, Group, Fondital.

Биметаллические

Как следует из названия биметаллы, в радиаторах этого вида используются два вида металлов — сталь и алюминий.

Биметаллический радиатор состоит из секций, каждая из которых представляет собой стальной трубный канал, помещенный в алюминиевый теплообменник.

Несмотря на более тяжелый вес в сравнении с алюминиевыми, введение в конструкцию внутреннего стального коллектора позволило увеличить прочностные и температурные характеристики биметаллических батарей. Они могут выдерживать напор теплоносителя в 50 — 100 бар (зависит от производителя) при температурах до 135 °С. При этом водородный показатель рабочей среды не играет существенной роли. Теплоотдача биметаллических радиаторов порядка 160 — 170 Вт.

Возможно будет интересно почитать про: Автономную систему отопления частного дома – полное руководство

Рис. 4 Конструкция биметаллических теплообменников

Стальные

Недорогие, простые и надежные радиаторы из стали бывают двух видов — панельные (рис. 5) и трубчатые.

Простейший трубчатый конвекционный радиатор состоит из двух фронтальных металлических листов, между которыми расположена трубопроводная магистраль с теплообменными пластинами, по которой циркулирует теплоноситель. Обогрев помещений происходит за счет конвекции воздушных масс.

Сверху наружные металлические панели покрывают защитным слоем лака, нанося его методом высокотемпературного обжига в печах.

Стальные теплообменники производят по технологии точечной сварки, они не являются секционными и разборными.

Предельные пороги давлений рабочей среды у трубчатых изделий 9 — 15 бар, у панельных 5 — 11 бар, теплопередача одной батареи лежит в диапазоне от 1200 до 1650 ватт. Стальные радиаторы выдерживают температуры рабочей среды до 115 °С. Водородный показатель не имеет существенного значения для стали и может отклоняться от нейтрального в 7 единиц на несколько пунктов в ту или иную сторону.

Однако для стали актуальна проблема коррозии, то есть высокое содержание кислорода в воде приводит к ее быстрому разрушению.

Поэтому радиаторы из стали не рекомендуется устанавливать в коммунальных квартирах и подводить к ним теплоноситель по трубам, не имеющим защиту от диффузии кислорода.

Также стальные панельные теплообменники чувствительны к перепадам давления и часто не выдерживают гидроудары, которые в централизованных отопительных сетях достигают значений порядка 35 — 40 бар.

Производители стальных батарей — отечественные фирмы “РС”, “Гармония”, немецкие “Kermi”, “Zehnde”, итальянские “Israp”, “Tesi”.

Рис. 5 Конструкция стальных панельных батарей

Впервые на российском рынке алюминиевые радиаторы появились в 90-х годах, их изготавливали в Италии несколько ведущих мировых производителей отопительного оборудования. Высокая теплопроводность и прочность батарей, которая по заявлению производителей доходила до 50 бар, казалось бы, могла обеспечить алюминиевым теплообменникам долгую безоблачную жизнь на отечественном рынке. Но зачем же понадобилось переделывать то, что и так хорошо работает?

Как указывалось выше, алюминий слишком требователен к водородному показателю рН, который не должен выходить за диапазон 7 — 8 единиц. В результате в процессе эксплуатации у одних потребителей батареи из алюминия функционировали до 10 лет, у других начинали течь через 2 — 3 сезона из-за разрушения защитного оксидного слоя.

Проблема усугублялась тем, что даже в индивидуальных домах, где в замкнутый отопительный контур можно было залить теплоноситель с фиксированным показателем рН, все равно текли батареи. Связано это с тем, что любая отопительная жидкость по тем или иным причинам со временем изменяет свой водородный баланс.

Вначале итальянские разработчики придумали технологию напыления внутрь проходного вертикального канала батарей защитных материалов. Однако они снижали теплопередачу и со временем истирались абразивными частицами песка, ржавчины, шлама, которые в большом количестве циркулируют по коммунальным отопительным сетям.

Возможно будет полезным узнать в отдельной статье, каким должен быть Температурный график подачи теплоносителя в систему отопления – условия, показатели

Рис. 6 Однотубчатый и двухтрубчатый полубиметалл – устройство в разрезе и внешний вид секций

Однотрубчатый полубиметалл

После неудачи в 2000-х годах с защитным напылением, итальянские производители разработали конструкцию радиаторов, получившую условное название однотрубчатый полубиметалл.

Так как самым уязвимым местом секций радиаторных батарей являлись их тонкостенные вертикальные участки, их усилили стальными трубками. По технологии изготовления уложенные в формы трубы из стали заливали алюминием.

После эксплуатации некоторое время у потребителей появились другие проблемы. Из-за разницы в тепловом расширении стали и алюминия в батареях возникали щелчки при резком изменении температуры теплоносителя. Иногда трубки из-за многочисленных циклов сжатия и расширения разбивали канал, в котором находились, и падали вниз, перекрывая путь теплоносителю.

Отопительная жидкость нередко проникала в пространство между стальной трубной оболочкой и алюминиевым каналом. После ее сжатия от расширения трубок образовывались невидимые глазу микротрещины, и батарея начинала подтекать. Эти недостатки привели к появлению другой конструкции батарей.

Производители однотрубчатого полубиметалла — российский Rifar серия Base, итальянская Sira, модель Gladiator.

Двухтрубчатый полубиметалл

В данной системе вместо одной вертикальной стальной трубки в секцию помещаются две изогнутые. Как в первой, так и во второй конструкции, это хорошо заметно на боковых торцах.

После изменений производители избавились от выпадания незакрепленных вертикальных труб, но основной недостаток алюминиевых батарей сохранился. Вода по-прежнему контактировала с алюминием, сейчас уже разрушая резьбу, предназначенную для ниппельного соединения секций.

Рекомендуем почитать: Что залить в систему отопления частного дома и как рассчитать объем жидкости

Производители двухтрубчатого биметалла — Sira, модели CF и RS.

Рис. 7 Биметалл в разрезе и экономичный тонкостенный вариант с завернутой резьбой от Rifar Monolit

Полный биметалл

Настоящий биметалл, где нет контакта теплоносителя с алюминием, впервые стала производить фирма Global. Модель называется Global Style и является первым полным биметаллом.

Global сделали водопроводящий коллектор в виде сваренных между собой горизонтальных и вертикальных трубных участков. На их горизонтальные отрезки толщиной 4 мм была нанесена внутренняя резьба для соединения секций между собой, вертикальные (их диаметр 13 — 22 мм) имели чуть меньшую толщину в 2 мм и приваривались к коротким горизонтальным участкам. После изготовления, стальной закладной элемент заливали алюминием под высоким давлением.

Несложная технология позволила избавиться от всех недостатков алюминиевых батарей и получить высокую прочность, максимально долгий срок службы настоящего биметалла. Случаи разрыва таких радиаторов неизвестны и рассчитывается математическим путем, они способны выдержать давление в 200 атмосфер.

К недостаткам биметаллических радиаторов следует отнести снижение теплоотдачи с течением времени из-за увеличения пространственного зазора между трубной закладкой и алюминиевой заливкой.

Поэтому европейские производители заливают трубы алюминиевой массой под давлением в 800 — 900 тонн на сантиметр квадратный, стремясь обеспечить плотный контакт на протяжении всего эксплуатационного срока. Более дешевые китайские изделия выпускают по технологии заливки алюминия под давлением в 400 тонн на сантиметр квадратный.

Распространенные марки биметаллических батарей от разных производитетей: Royal Thermo Indigo, Rifar Monolit, Sira RS Bimetal, Rommer Optima, Теплоприбор, Oasis BM, Halsen BS.

Рис. 8 Конструкция клееного полубиметаллического радиатора на примере рассыпавшейся низкокачественной китайской поделки

Экструзионный однотрубчатый полубиметалл

Технология придумана итальянской Sira и представляет собой сборную конструкцию.

При изготовлении вертикальные участки со стальной резьбовой Т-образной закладкой заливают алюминиевым сплавом под давлением, а горизонтальные фрагменты из первичного алюминия вытягивают методом экструзии. Так как в отличие от хрупкого силуминового сплава, первичный алюминий более мягок и пластичен, вероятность его разрыва на тонких вертикальных участках радиатора резко падает.

Далее вертикально экструзионно вытянутые фрагменты склеивают с отлитыми горизонтальными деталями через выступающие Т-образные гильзы, в результате получают технологический гибрид под названием «клеянка».

Понятно, что клеевое соединение в гибридном изделии — его самое слабое место. Склейка может быть нарушена при резких ударах от падения радиатора или при соединении секций между собой.

Хотя клеевая технология на первый взгляд кажется абсурдной, она помогает избавиться от существенного недостатка всех литых алюминиевых и биметаллических радиаторов.

Дело в том, что в процессе производства в отливке алюминиевой секции остается сквозное отверстие, которое располагается внизу в виде вытянутого стакана. Его закрытие — головная боль для многих производителей.

Любые приваренные пробки или тонкостенные крышки наподобие майонезных не могут выполнить роль эффективных заглушек. Внизу в углублении скапливается шлам, что ускоряет процесс разрушения алюминия. А тонкие крышки в радиаторах заподлицо с проходным каналом (Fondital) истираются абразивными частицами.

В отдельной статье подробно рассказывается о том, что из себя представляет Коллекторная система отопления частного дома, про основные узлы, конструкцию, монтаж, а также, используемые материалы

Рис. 9 Биметалл в разрезе, полученный по смешанной технологии

Смешанный однотрубчатый полубиметалл

Итальянцы не ищут легких путей. Убедившись в очевидном факте, что экструзионно вытянутый алюминий в «клеянках» также подвержен коррозии из-за отклонений в рН, они вставили в вертикальный фрагмент тонкую стальную трубку. Чтобы она не выпадала, как в конструкции с однотрубным полубиметаллом, ее сделали тонкостенной и запрессовали. Далее вертикальные экструзионно вытянутые фрагменты со стальной закладкой склеили с горизонтальными.

В результате реализации столь сложного и извилистого пути с использованием смешанной технологии получили полный биметалл.

Биметаллические радиаторы внешне, по месту расположения и размерным параметрам подсоединенных патрубков, ничем не отличаются от алюминиевых аналогов. Чтобы их подключить к отопительной магистрали, используются одинаковые комплектующие и арматура.

Рис. 10 Примеры подключения батарей к трубам из разных материалов

Материалы труб

Основной недостаток полных биметаллических радиаторов — слабая устойчивость стального трубопровода к коррозии, напрямую связанная с процентным содержанием кислорода в воде. То есть для установки биметаллических радиаторов лучше использовать металлические трубопроводы (сталь, нержавейка, медь) или полимерные с алюминиевой оболочкой — металлопластик и армированные алюминием полипропилен. Полипропиленовые трубы армированные стекловолокном тоже подойдут, но помните, что у них более высокую кислородопроницаемость, то есть, со временем в системе отопления может появиться коррозия на металлических частях (правда, пройдет очень много времени).

Арматура и комплектующие

Стандартная батарея имеет четыре резьбовых отвода, ее подключают в двух точках, вверху устанавливают кран Маевского, а на четвертый отвод ставят заглушку.

В торговой сети реализуют специальные наборы с переходниками (короткими муфтами с наружной и внутренней резьбой) для вкручивания в радиаторные отводы, в которые также входят кран Маевского, заглушка и крюки с крепежом для подвешивания батареи.

Чтобы можно было снять радиатор для ремонта и обслуживания, обычно его подключают с 2-х сторон через шаровые краны и муфты американки, которые также приобретают в торговой сети.

Если необходимо регулировать теплоотдачу, на трубопровод подачи перед батареей устанавливают терморегулятор.

Существует немало конструкций термостатических вентилей, которые способны полностью перекрывать воду, то есть заменяют один шаровый кран. Понятно, что такой прибор выгоднее приобрести, чем по-отдельности запорный кран и терморегулятор.

Для монтажа лучше использовать льняную паклю. Дело в том, что она в отличие от нити и Фум-ленты способна расширяться при намокании. То есть в процессе эксплуатации из-за разного температурного расширения алюминия и резьбовых стальных переходников, зазор между ними при нагреве становится слишком мал, и после отключения отопления холодные батареи начинает подтекать.

То есть Фум-лента и сантехническая нить не восстанавливают свою форму, в то время как лен от воды разбухает и перекрывает все мелкие каналы для прохождения теплоносителя.

Рис. 11 Комплекты для монтажа радиаторов

Схема подключения биметаллических радиаторов отопления

Радиаторы подключают в однотрубную и двухтрубную разводку отопительной системы. При этом в зависимости от места расположения подводящего теплоноситель трубопровода различают следующие схемы их подключения:

  • Нижнее. Не слишком эффективная по тепловой отдаче схема, в основном используется в популярной однотрубной разводке типа ленинградка. К ее преимуществам относят эстетичный внешний вид из-за отсутствия вверху труб, и более простой экономичный монтаж. (Кстати, есть статья об узле нижнего подключения радиатора, как выбрать и подключить).
  • Одностороннее. Основной тип подсоединения радиаторов в коммунальных квартирах при однотрубных и двухтрубных системах и наличии вертикального стояка.
    Если теплоноситель циркулирует по одной трубе, проходя последовательно через все радиаторы, в разводке обязательно должна присутствовать байпасная перемычка. При ее наличии можно отсоединить радиатор, перекрыв шаровые краны на входе и выходе труб, при этом вода будет обходить батарею по байпасу. По эффективности односторонняя схема подключения радиаторов биметаллических немного уступает диагональному и превосходит нижнее.
  • Диагональное. Наилучший вариант подключения радиатора по теплопередаче при верхней подаче. Широко используется при однотрубной, двухтрубной разводках вне зависимости от положения отопительного стояка. В самотечных системах отопления, которые иногда используют в индивидуальных домах, все батареи подключают по диагонали.

В отдельной статье можно подробно узнать Все о диагональном подключении радиаторов отопления, здесь рассказывается о способах и схемах подключения радиаторов, даются советы и рекомендации

Рис. 12 Виды подключений и их тепловая эффективность

Установка и подключение радиаторов отопления

Перед проведением работ приобретают комплектующие — переходники с крюками, в типовой комплект часто входят дюбеля с винтами. Также покупают терморегулятор и два вентильных или шаровых крана.

Для просверливания отверстий понадобится шуруповерт или дрель с подходящим для дюбеля сверлом. Также необходимо иметь строительный уровень, рулетку и карандаш, разводной сантехнический ключ.

Перед проведением работ определяют место размещения и размеры батареи по следующим правилам:

  • теплообменник располагают симметрично относительно центральной оси окна;
  • он должен подвешиваться на расстоянии 100 — 120 мм от нижней поверхности подоконника;
  • расстояние между полом и батареей не должно выходить за диапазон 80 — 120 мм;
  • оптимальный просвет между батареей и стеной 30 — 50 мм;
  • общая длина батареи — 70 — 80% от ширины окна, под которым она закрепляется.

Для навешивания биметаллических радиаторов используют минимум три кронштейна — два вверху и один снизу.

Производя подключение биметаллических радиаторов отопления, возможно понадобится информация про: Трубы для отопления – какие бывают виды современных труб, а также, что лучше выбрать при монтаже системы отопления в частном доме или квартире

Рис. 13 Схемы подключение биметаллических радиаторов отопления к вертикальному стояку в коммунальных квартирах

Диагональное подключение биметаллического радиатора с терморегулятором при заранее выведенных трубах проводят в следующей последовательности:

Крепление удерживающих крюков

  • Вначале проводят разметку на стене. Очерчивают центральную вертикальную линию, затем симметрично прикладывают радиатор к стене (понадобится помощь второго работника) и делают карандашом сквозь его ребра отметки.
  • Две точки под горизонтальным участком секции ставят вверху и одну точку внизу около центральной линии.
  • Далее сверлят отверстия необходимого диаметра и устанавливают радиаторные крепления на дюбеля с шурупами.
  • Навешивают батарею и проверяют правильность ее установки — она должна жестко опираться на все кронштейны без просветов.

Подсоединение арматуры

  • Прикручивают ключом четыре переходника с радиаторной 1-дюймовой резьбы на размеры 1/2 и 3/4 дюйма, которые имеют герметизирующие прокладки.
    Теоретически их можно вкручивать без какой-либо дополнительной подмотки, однако лучше использовать лен. Дело в том, что при контакте алюминиевой и стальной резьбы со временем происходит их частичное разрушение, в свободных полостях оседает известковый налет и спустя определенное время переходник пристывает и не поддается выкручиванию разводным ключом.

    Лен препятствует образованию отложений, забивая свободные каналы, что значительно облегчает дальнейший демонтаж арматуры и разборку батареи.

  • Вверху радиатора прикручивают соединительную муфту (американку) для подключения терморегулирующей головки, снизу по диагонали такую же американку устанавливают на выходе батареи.
  • На свободный выход внизу устанавливают заглушку, для подмотки деталей используют лен. Напротив терморегулятора вкручивают разводным ключом в переходник кран Маевского.
  • Далее на верхнюю входную трубу прикручивают термостатическую головку с регулятором, повернутым в сторону помещения.
  • На выходную диагональную трубу снизу вворачивают запорный клапан (шаровый кран).
  • После навешивают радиатор на кронштейны и соединяет его вход и выход с термостатической головкой вверху и запорным клапаном снизу, используя накидные гайки американок.

Рис. 14 Подключение биметаллических радиаторов отопления — основные этапы

Биметаллические радиаторы — одна из новейших технологических разработок ведущих мировых производителей, которую можно эффективно использовать как в коммунальных, так и в индивидуальных отопительных системах. Методы и варианты с помощью которых производится подключение биметаллических радиаторов отопления ничем не отличается от подсоединения популярных алюминиевых радиаторных теплообменников.

подключение, схема, сборка и видео

В наших климатических условиях любой дом – как многоэтажный, так и частный нуждается в обогреве. Отопительная система находится в рабочем состоянии почти половину года. Выбор отопительных приборов – это достаточно ответственный момент. Если раньше почти во всех домах можно было увидеть только чугунные радиаторы, то сегодня на рынке можно увидеть батареи, изготовленные из таких материалов как сталь, алюминий. Кроме того, имеются в продаже и радиаторы из двух различных материалов, то есть биметаллические радиаторы.

Биметаллический радиатор

Биметаллические радиаторы с каждым годом набирают все большую популярность. Такие радиаторы подходят для частных или загородных, для многоквартирных жилых домов. Установка биметаллической батареи отопления – это серьезный вопрос, рассмотрим же, как ее правильно производить.

Требования к отопительным приборам

Биметаллические радиаторы считаются наиболее оптимальным решением с точки зрения эффективности и практичности. Кроме этого, подобные радиаторы отличаются довольно привлекательным внешним видом. Установка биметаллической батареи отопления может не то, чтобы испортить внешний вид помещения, но придать ему завершенный, эстетичный облик.

Отопительные радиаторы должны соответствовать некоторым техническим требованиям. В первую очередь, они должны обладать хорошей прочностью.

Благодаря своей прочности они способны выдержать довольно высокое рабочее давление. Биметаллические отопительные радиаторы способны выдержать давление от 20 до 40 атмосфер. В многоквартирных домах рабочее давление редко превышает показатель в 10 атмосфер, но иногда коммунальщики пускают теплоноситель по трубам под слишком высоким давлением и запас прочности радиатора никогда не будет лишним. Благодаря тому, что биметаллические радиаторы изготовлены из двух различных материалов, они сочетают в себе все их наиболее хорошие характеристики и качества.

Биметаллический радиатор в разрезе

Достоинства биметаллических радиаторов отопления

Среди преимуществ подобных радиаторов можно выделить следующие:

  • Долговечность. Они способны прослужить около 20 лет;
  • Привлекательный внешний облик, который не сможет испортить интерьер;
  • Высокая гидродинамическая и механическая прочность;
  • Высокий уровень отдачи тепла.
  • Благодаря тому, что теплоноситель контактирует только со стальной поверхностью таких радиаторов, они отличаются довольно высокой стойкостью к воздействию коррозии.

Так как биметаллические радиаторы изготавливаются с каналами небольшого диаметра, объем теплоносителя несколько сокращается.

Рекомендуем к прочтению:

Основные достоинства биметаллических радиаторов

Если сравнивать биметаллические радиаторы с алюминиевыми, исходя из ценовой категории, то первые процентов на 20 будут дороже, однако они обладают более высокой прочностью и более эффективны.

Стоит еще раз задуматься о материале

Радиаторы отопления могут быть следующих типов:

  • Стальные радиаторы;
  • Чугунные радиаторы;
  • Биметаллические радиаторы;
  • Алюминиевые радиаторы.

Ответить на вопрос, какой именно радиатор отопления выбрать, довольно сложно.

Это объясняется тем, что для некоторых случаев может подойти только тот или иной тип радиатора. Алюминиевые радиаторы не рекомендуется устанавливать в квартире с центральной отопительной системой. Это можно объяснить тем, что в многоэтажных домах рабочее давление более высокое, а значит, нужны более прочные батареи.

Сравнение различных отопительных приборов

Если нужны более прочные отопительные приборы, то наилучшим решением будет покупка биметаллических радиаторов отопления. Такие радиаторы способны выдержать более высокое рабочее давление, чем радиаторы, изготовленные из других материалов. Биметаллические радиаторы могут производиться в различной форме, а их поверхность может быть самых различных оттенков.

По внешним признакам довольно трудно отличить биметаллический радиатор отопления от алюминиевого прибора. Они отличаются, в основном, по своему весу. Биметаллический радиатор примерно в полтора раза тяжелее, чем радиатор, изготовленный из алюминия.

Биметаллические радиаторы можно разделить на два типа, исходя из технологии их изготовления. Таким образом, такие отопительные приборы могут быть:

  • Изготовленные на основе каркаса из стали;
  • Радиаторы с усиленными каналами.

Радиаторы, изготовленные на основе стального каркаса, хороши тем, что вода внутри системы никак не контактирует с поверхностью из алюминия. Благодаря этому они более долговечные и не подвергаются воздействию коррозии. Выбирая такой тип биметаллических радиаторов, в первую очередь, необходимо обратить внимание на их весовую и ценовую категорию.

Рекомендуем к прочтению:

Установка биметаллических радиаторов отопления

Установка биметаллических радиаторов отопления должна быть произведена только в соответствии с теми рекомендациями, которые установлены на заводе производителе подобных приборов. Покупая радиатор, обратите внимание на наличии инструкции, которая поможет произвести монтаж биметаллических радиаторов отопления. Лучше всего установку радиаторов отопления доверить квалифицированному специалисту.

Очень важным этапом является расчет секций биметаллического радиатора отопления. Ведь именно от правильности расчета зависит тепло.

Как рассчитать биметаллические радиаторы отопления? Можно изучить инструкцию к радиаторам, найти биметаллические радиаторы отопления, расчет на нашем ресурсе или пригласить для этого специалиста. Чтоб установить биметаллические батареи отопления, расчёт количества осуществляется исходя из их мощностных характеристик и площади вашего дома.

Количество ребер радиатора отопления зависит в первую очередь от площади комнаты

Еще один аспект – это схема подключения биметаллических радиаторов отопления. Лучше, если разработкой такой схемы будет заниматься специалист. Биметаллические радиаторы отопления, нижнее подключение или боковое подключение – в любом случае, все необходимо заранее просчитать, чтобы в дальнейшем не пришлось регулярно производить ремонт биметаллических радиаторов отопления.

Этапы установки биметаллических отопительных приборов:

  • Перед установкой радиаторов рекомендуется промыть отопительную систему. Лучше не использовать для этого растворы, которые содержат щелочь. Также не рекомендуется зачищать поверхности, контактирующие между собой посредством абразивных компонентов, так как это может впоследствии спровоцировать утечку воды.
  • Ручной или автоматический клапан необходимо монтировать на каждый из устанавливаемых радиаторов. Они необходимы для того чтобы производить выпуск воздуха из системы.

Кран Маевского для спуска воздуха с радиатора отопления

  • Чтобы предотвратить загрязнение в рабочей зоне клапана, необходимо произвести монтаж фильтров на подающий водопровод.
  • Если монтаж клапана будет осуществлен верным образом, то сразу после выпуска воздуха из системы он должен будет закрыться.

При установке радиаторов отопления, необходимо соблюдать следующий порядок действий:

  1. Первым делом, необходимо осуществить разметку места для крепежных кронштейнов;
  2. Далее идет сборка биметаллических радиаторов отопления. Радиатор необходимо устанавливать таким образом, чтобы были совмещены участки головок и кронштейны с горизонтальными секциями радиатора;
  3. Радиатор необходимо соединить с кранами, подводными коммуникациями и клапанами;
  4. Необходимо установить в верхней части радиатора воздухоспускатель.

Можно посмотреть видео, которое покажет, как произвести монтаж и подключение биметаллических радиаторов отопления.

Как правильно подключить радиатор при подаче снизу

Из этого материала вы узнаете о том как правильно подключить или обвязать радиатор отопления если подача теплоносителя по стояку подается снизу в верх.

 

[themify_quote]

[themify_col grid=”2-1 first”]

Иногда при поиске вариантов по вопросу подключения радиаторов с нижней подачей многих интересует не обвязка секционного радиатора который требуется соединить со стояком отопления, по которому теплоноситель или подача теплоносителя движется снизу вверх.

Варианты разновидностей радиаторов с нижней подводкой, или виды обвязки радиаторов в новостройках, где отопление проложено в стяжке пола и подводка труб к радиаторам всегда снизу это другая статья, ее можно посмотреть по ссылке..

[/themify_col] [themify_col grid=”2-1″]

[/themify_col][/themify_quote]

Если же вопрос о том как правильно обвязать  радиатор при подключении к стояку по которому тепловой поток движется снизу в верх по стояку, то эта статья об этом.

При замене радиаторов очень важно учитывать движение потока теплоносителя в системе. Очень часто бывает так что подача тепла многоквартирном доме осуществляется снизу в верх, что противоречит законам физики и здравому смыслу, но что имеем то имеем.. Такой снизу идущий поток создает избыточную нагрузку на насосное оборудование центральной котельной но как говорится что имеем то имеем..  Дело в том что если ошибочно полагать что поток теплоносителя движется в правильном направлении – сверху вниз и устанавливать батарею правильно. То в результате правильной установки радиатора отопления может обнаружиться  что он почему то не греет.

Как исправить ситуацию и заставить батарею прогреваться и отдавать тепло?  Самый простой и изящный способ установки батареи в диагональной обвязке.

 

Однако не всегда имеется возможность подключать радиаторы по диагональной схеме обвязки. И часто при подаче теплоносителя снизу вверх батареи подключают во так.

 

Или вот такой вариант обвязки радиатора отопления при подаче теплоносителя снизу – не очень красиво..

 

Но это – боковое подключение хорошо работает при коротких радиаторах до семи секций. А если секций двенадцать или больше?

 

Что делать в таком случае когда заказчик не хочет что бы обвязка батареи монтировалась по диагонали? Есть конечно же у сантехников хитрости и на этот счет но это уже из области находчивости Русских умельцев по замене батарей отопления.

Для того что бы установить длинную батарею (более десяти секций) с боковым подключением так что бы она могла прогреваться по всей ее длине, нужно взять отрезок металлопластиковой трубы и вставить его в нижнюю часть радиатора по всей длине, таким образом удлинив поток теплоносителя в батарее. Для этого берем комплектную футорку на 3/4 с резьбой по всей длинне внутреннего диаметра. И вкручиваем в нее обжимной фитинг для металлопоастиковой трубы на 1/2 дюйма.

Получится вот такая интересная конструкция.

Которую мы установим внутрь радиатора отопления в нижнюю ось самой батареи и за счет этого удлиним поток тепла по свей многосекционной батарее отопления.

И вставляем удлинитель теплоносителя в батарею отопления.

Все теперь невероятно длинные радиаторы отопления с боковым подключением будут греть на полную мощность отдавая максимум тепла в отапливаемое помещение.

В принципе можно даже не обращать внимания на то какая подача идет по стоякам, низ или верх, это неважно, если  установлен только один радиатор.  Если один то для этого радиатора, вполне достаточно бокового подключения, если батарея длинная – более 6 секций то боковое подключение можно аппгрейдить удлинителем потока, как то показано выше.

Хотите установить несколько радиаторов?  Можно установить несколько, вплоть до целой ветки…Всю ветку радиаторов отопления  можно подключить к одному стояку отопления и все радиаторная ветка будет отлично прогреваться. Даже если на ней семь батарей,  при этом абсолютно неважно, откуда подается теплоноситель с верху или снизу и никаких выподвертов с трубами – классическая двухтрубка тупиковая  Об этом подробно в следующей статье…

      Рекомендации

подключение, схемы и методы, как правильно подключить батареи в квартире от котла

Биметаллические радиаторы — устройства, состоящие из двух материалов. Обычно это сплав алюминия со сталью, хотя встречаются другие варианты.

Подобные батареи пользуются высоким спросом благодаря комбинации хороших характеристик.

Процесс подготовки к подключению от котла

Предварительные работы весьма важны перед монтажом радиаторов отопления:

  • Обследование текущей обвязки. Изучение позволит создать аналогичную систему, что положительно скажется на эксплуатации.

  • Проверка комплектующих к радиатору. В наборе должны присутствовать: кран Маевского, запорные вентили, кронштейны.

В некоторые модели включены переходники и прокладка, иногда их нужно докупить. При ручной замене понадобятся инструменты — ключи, подходящие по размеру. И также необходимо приобрести герметик.

  • Проверка труб на совместимость с новой батареей. Внешний слой биметаллического устройства выполнен из алюминия, которые не сочетается с мягкими материалами. Например, потребуется заменить медную обвязку или краны. В противном случае системе грозит скорое разрушение.
  • Подбор места размещения батареи. Это особенно касается креплений, если происходит замена старого устройства.
  • Проведение исследования радиатора на наличие видимых повреждений, целостности поверхности, покрытия.

  • При полном соответствии компонентов переходят к замене. На подготовительном этапе из старых батарей сливают воду.

Окончив подготовку, переходят к выбору схемы подключения. В первом пункте указано, что следует выбирать вариант, аналогичный старому. Это позволит не перестраивать всю систему и сохранит текущий КПД. Процесс работы достаточно прост и описан ниже.

Важно! По окончании проводят комплекс испытаний, известный как опрессовка. Она включает проверки водой, теплом и пневматикой.

Методы подключения и схемы

Существует три метода монтажа радиаторов:

  • Боковой: подачу присоединяют к верхней части батареи, а обратку к нижней, причём с одной стороны. Этот вариант эффективен если количество секций не превышает 10. В противном случае удалённая часть будет слабо прогреваться, что снизит КПД. Подобная схема подключения наиболее распространена в многоквартирных домах.

Фото 1. Три распространенные схемы подключения биметаллических радиаторов отопления и их примерные теплопотери.

  • Нижний: обе трубы подводят с одного края, горизонтально, что помогает скрыть обвязку, создать красивый интерьер. Применяется в хорошо прогреваемых помещениях или в сочетании с тёплыми полами. Это связано со слабым прогревом радиаторов, по которым вода должна подниматься наверх.
  • Диагональный: подачу монтируют к верхней части батареи, а обратку — к нижней, но с другого бока. Теплоноситель легко растекается по всему объёму, что делает данную схему наиболее эффективной.

При монтаже нового устройства в многоквартирном доме нужно выбирать тот же вариант, что задуман инженерами. В частном строении следует ориентироваться на личные предпочтения и расчёты.

Как правильно подключить биметаллический радиатор отопления в квартире

Определившись со схемой, подготавливают детали:

  • батарею;
  • трубы;
  • краны;
  • клапан спуска воздуха;
  • переходники;
  • запорную арматуру;
  • кронштейны;
  • прокладки.

Справка! Большинство деталей идут в комплекте с радиатором. При отсутствии некоторых компонентов, их необходимо докупить.

Сам процесс заключается в 6 шагах:

  1. Демонтаж старого устройства. Он начинается на подготовительном этапе со слива воды из текущей батареи. Для этого перекрывают вентиль на подаче и открывают на обратке. Затем следует удаление участков труб, примыкающих к магистрали. Обычно их просто выкручивают. Если соединения не имеют резьбы, используют приборы для нагрева.
  2. Разметка точек крепления батареи. Для этого радиатор прикладывают к предполагаемому месту монтажа. Понадобятся не менее двух людей: пока один держит, второй метит карандашом (или другим предметом, в зависимости от покрытия). Следует помнить, что трубы должны состыковываться, а для выравнивания использовать строительный уровень.
  3. Установка и фиксация крепежей. В намеченных точках проделывают отверстия под крепежи. Для этого потребуется перфоратор и дюбели. Последние часто включают в комплект.

Для радиаторов из трёх секций достаточно одного крепления, из 4–6 — двух, из 7–9 — трёх, в остальных случаях — четырёх.

Пять и больше требуются при монтаже очень длинных конструкций, применение которых нецелесообразно из-за снижения КПД.

  1. Установка радиатора. Устройство ставят на крепления, так, что горизонтальный коллектор получается подвешенным. Следует учитывать, что биметаллические радиаторы надо подключить и испытать в заводской упаковке. Это помогает при обнаружении проблем: после неудачной опрессовки батарею легко демонтируют и возвращают производителю для устранения неисправностей или замены на новую. Рабочий прибор закрепляют, вкручивая в резьбу. Иногда трубы просто приваривают, что зависит от определённой обвязки.
  2. Установка крана Маевского. Устройство всегда включено в комплект к радиатору. Его размещают в любой доступной для обслуживания точке батареи, затягивая динамометрическим ключом. Такой способ укрепления поможет избежать превышения напряжения выше нормы. Затем проводят монтаж запорной арматуры и регулятора температуры, если последний используют.
  3. Соединение с теплопроводной системой отопления. Биметаллические радиаторы нельзя зачищать наждаком или напильниками, поскольку испортится обшивка. Это приведёт к возникновению течей, в редких случаях переходящих в прорыв.

Особенности подведения батарей в частном доме

Во время монтажа нужно соблюдать принципы, описанные выше. Последовательное размещение компонентов и тщательный контроль над процессом позволит создать систему, способную долго работать от котла без дополнительного обслуживания.

Важно! При выборе места следует выбирать участки со свободным доступом. Это сделает возможный ремонт удобнее. И также облегчит перекрытие кранов при необходимости проведения опрессовки.

Принципиально схемы ничем не отличаются от тех, что используют в квартирах. Установка биметаллического радиатора довольно проста, но для соблюдения точности будет правильно пригласить специалиста.

Полезное видео

Посмотрев видео, можно ознакомиться с процессом обвязки, пайки труб, установки самого радиатора.

Важность качественной работы

Качественный монтаж — основа длительной эксплуатации. Ошибки, допущенные в процессе работ, могут привести к поломке. В первую очередь, это касается кранов, сварки, прокладок и герметичных стыков.

Установка биметаллических радиаторов отопления своими руками

Биметаллические радиаторы сегодня очень часто используются в системах отопления квартир и частных домов. Они имеют ряд серьёзных преимуществ перед чугунными и алюминиевыми агрегатами, вследствие чего довольно широко востребованы в сфере обогрева жилья.

Если говорить о преимуществах, то биметаллические батареи характеризуются следующими свойствами:

  • Высокая теплоотдача.
  • Высокая коррозиостойкость по сравнению с алюминиевыми изделиями.
  • Хорошее рабочее давление.
  • Высокая инерционность.
  • Маленькая масса.
  • Привлекательный внешний вид.

Читайте также: Как батарею подключить?

Установка биметаллических радиаторов – процесс довольно трудоёмкий, требующий большого количества времени и усилий. Однако если знать все тонкости, соблюдать аккуратность и правильно выполнять все операции, эту работу вполне можно сделать своими руками.

Нужно помнить, что от того, насколько грамотно сделана обвязка, зависит эффективность работы системы отопления.

Демонтаж старых батарей

Если имеется в виду не монтаж новой системы отопления, а замена старых радиаторов своими руками, то начинаем работы с демонтажа старых батарей. Поэтапно процесс выглядит следующим образом:

  • Необходимо остановить систему, дождаться её остывания и слить теплоноситель.
  • Болгаркой обрезаем старые радиаторы на линии подводки между резьбовым соединением и самим агрегатом.
  • Придерживая трубу одним трубным ключом, вторым откручиваем ненужный кусок трубы. Если соединение не поддаётся, его необходимо нагреть – за счёт температурного расширения резьбу удастся провернуть.
  • После того, как мы открутили ненужные куски труб, очищаем резьбу на трубе подводки и осматриваем её на предмет повреждений. Если таковые обнаружены – срезаем её болгаркой и плашкой нарезаем новую.
  • Ненужную батарею снимаем с креплений. Сами крепления преждевременно не снимаем – они могут пригодиться для того, чтобы крепить к стене новые биметаллические радиаторы.

Расчёт биметаллических обогревателей

Для того чтобы обеспечить эффективный нагрев помещения, нужно грамотно рассчитать мощность батарей. Она зависит от размера, то есть от количества секций.

Исходя из норм отопления и зная объём помещения, рассчитываем требуемую мощность для отопительных приборов. Зная мощность одной секции биметаллического радиатора – а она составляет около 180 Вт, набираем необходимое количество секций, чтобы обеспечить требуемую мощность.

Проверяем, возможен ли монтаж изделия с полученными размерами в нашем помещении. При этом нужно учитывать следующие факторы:

  • Радиаторы отопления устанавливаются под оконными проёмами – таким образом мы создаём тепловую завесу для холодного воздуха, идущего от окна.
  • Обвязка своими руками выполняется таким образом, чтобы была возможность выполнять сервис и ремонт агрегата без остановки системы отопления, для этого используется система байпасов.
  • Расстояние от верхнего края батареи до подоконника должно составлять от 5 до 10 см.
  • Расстояние от пола до нижнего края должно составлять около 15 см.
  • Монтаж осуществляется таким образом, чтобы агрегат находился на стене по средней линии окна.
  • Обвязка новых батарей удобнее всего полипропиленом. Если речь идёт о замене радиаторов, то можно воспользоваться старым трубопроводом, при условии, что он в хорошем состоянии.
  • Обвязка выполняется с использованием системы байпасов, регулировочных вентилей и кранов Маевского.

Способы разводки и подключения биметаллических радиаторов

Выполняя монтаж биметаллических батарей своими руками, нужно знать о том, какими способами может выполняться обвязка.

Читайте также: Ключи для разборки алюминиевых радиаторов.

Система отопления бывает двух типов:

  • Однотрубная – теплоноситель движется по одной трубе от котла через все приборы отопления, соединённые последовательно. Недостатком такой схемы является то, что к последнему агрегату жидкость приходит уже ощутимо остывшей. Поэтому для выравнивания температуры в помещениях последние в цепочке устройства нужно увеличивать.
  • Двухтрубная – теплоноситель движется по трубе, к которой параллельно подсоединены приборы отопления. Остывшая жидкость по другой трубе возвращается к котлу. Такая система обеспечивает равномерное прогревание всех батарей, однако она гораздо дороже и сложнее.

Подключение к системе можно выполнять по следующим схемам:

  • Односторонняя – прибор подключается через верхний и нижний патрубки с одной стороны.
  • Нижняя – прибор подключается через правый и левый нижние патрубки. Эта схема используется в том случае, если мы прячем трубы в пол.
  • Диагональная – прибор подключается через верхний патрубок с одной стороны и через нижний патрубок с другой стороны.

Установка биметаллических радиаторов своими руками

После того, как демонтированы старые батареи, рассчитаны размеры новых радиаторов и они собраны, можем начинать монтаж. Батареи имеют небольшую массу, поэтому их можно без проблем крепить к стене. Процесс состоит из следующих этапов:

  • Прикладываем агрегат к стене и отмечаем карандашом на стене места расположения кронштейнов для крепления.
  • Кладём прибор на пол и в отмеченных местах крепим к стене кронштейны при помощи дюбелей.
  • Крепим агрегат к стене.
  • Врезаем в стояк тройник и ведём подводку к месту установки батареи.
  • Выполняем подключение, используя систему байпасов и регулировочные вентили. В глухой точке ставим кран Маевского для избавления от пузырьков воздуха. Все резьбовые соединения должны быть с использованием прокладок и динамометрического ключа, контролирующего усилие затягивания.
  • После того, как обвязка закончена, запускаем систему и следим за отсутствием протечек и равномерностью нагревания устройств. Если всё работает нормально, работу можем считать завершённой.

Заключение

Монтаж биметаллических радиаторов своими руками – работа довольно сложная и трудоёмкая. Однако она вполне по плечу человеку аккуратному и трудолюбивому. Если будут соблюдены все требования, учтены все нюансы, а все операции будут выполнены старательно и добросовестно, ваши биметаллические изделия будут исправно обогревать жильё, даря уют и комфорт вам и вашим близким.

Как правильно подсоединить батарею отопления

Пример подсоединения

Обеспечение дома или квартиры теплом — задача номер один в холодное время года. Поэтому каждый обыватель стремится первым делом создать эффективно работающую систему, которая была бы при этом экономически оправданной. А поскольку в основной своей массе системы отопления представлены радиаторным типом, вопрос о том, как правильно подсоединять батареи отопления — один из самых актуальных.

Для многих это ни о чем не говорит, особенно для тех, кто впервые сталкивается с проблемой обвязки отопительной системы. А вот тот, кто уже имел дело с созданием подобных схем, прекрасно понимает, о чем идет речь.

Классификаций типов обвязки и разводки трубной системы не так уж много, тем более, когда дело касается обвязки радиаторов. Поэтому разобраться в этом вопросе будет не очень сложно. Чаще всего именно разводка труб влияет на характер присоединения батарейных радиаторов. Поэтому необходимо рассмотреть классификацию различных систем отопления и установить, к какой из них лучше всего подходит то или иное подсоединение.

Классификация отопительных систем

Основной критерий разделения систем отопления — это количество контуров. По этому признаку все отопительные системы делятся на две группы:

  1. Однотрубные.
  2. Двухтрубные.

Первый вариант самый простой и дешевый. Это, по сути, кольцо от котла к котлу, где в промежутках установлены радиаторы отопления. Если дело касается одноэтажного строения, то это оправданный вариант, в котором можно использовать естественную циркуляцию теплоносителя. Но чтобы температура оказалась равномерной по всем комнатам дома, надо предусмотреть некоторые меры. К примеру, нарастить секции на крайних в цепи радиаторах.

Оптимальный вариант для такой трубной схемы — это подсоединить батарею по методу ленинградки. По сути, получается, что обычная труба проходит по всем комнатам около пола, и в нее врезаются радиаторные батареи. В таком случае используется так называемая нижняя врезка. То есть радиатор подсоединяется к трубе через два нижних патрубка — в один теплоноситель входит, а из другого выходит.

Внимание! Теплопотери при таком виде подключения батареи составляют 12–13%. Это самый высокий уровень тепловых потерь. Так что перед принятием подобного решения взвесьте все за и против. Первоначальная экономия может превратиться в большие расходы в процессе эксплуатации.

Допустимые ошибки

В целом это неплохая схема подключения, которая себя оправдывает в небольших зданиях. А чтобы равномерно распределить теплоноситель по всем радиаторам, можно в нее установить циркуляционный насос. Вложение недорогое, причем прибор работает отлично и требует небольшого потребления электроэнергии. Зато обеспечивается равномерное распределение тепла по всем помещениям.

Кстати, однотрубная схема обвязки очень часто используется в городских квартирах. Правда, нижнее подключение батареи здесь использовать уже не получится. То же самое следует сказать и о двухтрубной системе.

Другие виды подключения

Есть более выгодные варианты, чем нижнее подключение, которые обеспечивают снижение теплопотерь:

Диагональный вид

  1. Диагональное. Все специалисты давно пришли к выводу, что этот тип подключения идеален независимо от того, в какой трубной схеме обвязки он применяется. Единственная система, где невозможно использовать этот вид — это горизонтальная нижняя однотрубная система. То есть та самая ленинградка. В чем суть диагонального подключения? Теплоноситель движется внутри радиатора по диагонали — от верхнего патрубка к нижнему. Получается, что горячая вода равномерно распределяется по всему внутреннему объему прибора, опускаясь сверху вниз, то есть естественным путем. А поскольку скорость движения воды не очень велика при естественной циркуляции, то теплоотдача будет высокой. Теплопотери в таком случае составляют всего лишь 2%.
  2. Боковое, или одностороннее. Этот вид очень часто используется в многоквартирных домах. Подключение производится к боковым патрубкам с одной стороны. Специалисты считают, что этот вид — один из самых эффективных, но только если в системе установлена циркуляция теплоносителя под давлением. В городских квартирах с этим проблем нет. А чтобы обеспечить его в частном доме, придется устанавливать циркуляционный насос.

В чем преимущество одного вида перед другими? По сути, правильное подключение — это залог эффективной теплоотдачи и снижения теплопотерь. Но чтобы правильно подсоединить батарею, необходимо расставить приоритеты.

Возьмем, к примеру, двухэтажный частный дом. Что предпочесть в этом случае? Здесь несколько вариантов:

Двух и однотрубная системы

  • Установить однотрубную систему с боковым подключением.
  • Провести монтаж двухтрубной системы с диагональным подключением.
  • Использовать однотрубную схему с нижней разводкой на первом этаже и с верхней разводкой на втором.

Так что варианты схем подключения всегда можно найти. Конечно, придется учесть некоторые нюансы, например, расположение помещений, наличие подвала или мансарды. Но в любом случае важно правильно распределить радиаторы по комнатам с учетом количества их секций. То есть мощность отопительной системы придется учесть обязательно даже при таком вопросе, как правильное подключение радиаторов.

В одноэтажном частном доме правильно подключить батарею будет не очень сложно, учитывая длину отопительного контура. Если это однотрубная схема ленинградка, то возможно только нижнее подключение. Если же двухтрубная схема, то можно использовать коллекторную систему или солнечную. Оба варианта основаны на принципе подсоединения одного радиатора к двум контурам — подачи теплоносителя и обратки. В этом случае чаще всего используется верхняя трубная разводка, где распределение по контурам производится в чердачном помещении.

Кстати, этот вариант считается оптимальным как в плане эксплуатации, так и при ремонтном процессе. Каждый контур можно отсоединить от системы, не выключая последней. Для этого в точке развода труб устанавливается отсекающий вентиль. Точно такой же монтируется и после радиатора на патрубке обратки. Стоит только перекрыть оба вентиля, чтобы отсечь контур. Проведя слив теплоносителя, можно спокойно заниматься ремонтом. При этом все остальные контуры будут работать в штатном режиме.

Полезные советы

Классическая система

Многие считают, что вариант подключения радиатора не так важен, когда дело касается теплоотдачи. Ведь многое будет зависеть от выбранного типа источника тепла. К примеру, у биметаллических радиаторов отопления теплоотдача выше, чем у чугунных. Но представьте, что чугунные приборы установлены по диагональному принципу движения теплоносителя, а биметаллические по нижнему. В первом случае теплопотери составляют 2%, а во втором — 12%. Разница в потерях — целые 10%. Для отопительной системы это достаточно высокий показатель, который будет влиять не только на температурный режим внутри помещений, но и на количество потребляемого топлива. Для частных домов это очень важно.

Сегодня специалисты дают рекомендации, касающиеся повышения теплоотдачи приборов. Для этого на стене позади радиатора можно установить отражающую панель, например, обычный кусок ДВП, отделанный алюминиевой фольгой. Но учтите, что расстояние от стены до радиатора в этом случае должно быть минимум 1,5 см.

Заключение по теме

Какой же вывод? Правильное подключение радиаторов отопления является важным критерием эффективной работы всей системы. От этого будет зависеть не только температура внутри комнат, но и расход топлива. А экономия сегодня стала основным показателем, от которого зависит благосостояние каждого жителя квартир и частных домов.

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности. Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление.Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, заставляющей электроны двигаться в электрической цепи. Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током.Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг. Напряжение — это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока.Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом. Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление.Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов). Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, которое проталкивает ток через цепь. Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства.Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) протекать через нее.Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары). После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные.Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузки. Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4. Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.). Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык один за другим, чтобы образовалась простая петля для прохождения тока через цепь.Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю. Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути для прохождения тока.На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым. Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В приведенной ниже параллельной цепи два или более сопротивления (R1, R2 и т. Д.) соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной стороне.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи.Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь. В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием.Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A — это наиболее распространенный тип устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь.Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току. Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты.Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя. Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так.Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току. Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM. Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, встроенные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока. (Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка. Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым.Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току. Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг.Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки плавкими вставками или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific. Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель.Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или закреплены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с предохранителем

Конструкция элемента предохранителя довольно проста. Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже.Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя.Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними.Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются «нециклическими» автоматическими выключателями.

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно.Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.

Тип с автоматическим сбросом — механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями.Этот тип автоматического выключателя используется для защиты силовых цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автоматическим сбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока. Автоматические выключатели с автоматическим возвратом в исходное положение считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Твердотельный тип с автоматическим сбросом — PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры. PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимеров PTC

В нормальном состоянии материал полимерного ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе.Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое. Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока в цепи остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи. Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи.Устройство управления или переключатель позволяет включать или выключать электричество в цепи. Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • Однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухпозиционные) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, кроме случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предела температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, в то время как нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды — тянущие, тип

Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, электродвигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как спроектирован двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет высоким. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Последовательные и параллельные конфигурации батарей и информация

BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)

Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.

Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно для увеличения емкости с 2400 мАч до 4800 мАч.Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

Аккумуляторы большинства типов подходят для последовательного и параллельного подключения. Важно использовать батареи одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи.Аналогия — это цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

Рис. 1: Сравнение батареи с цепью.
Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

Слабый элемент может не выйти из строя сразу, но при нагрузке он истощится быстрее, чем сильный.При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья. Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).

Приложения с одной ячейкой

Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой.Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

Литий-марганцевые и другие системы на основе лития часто используют ячейки с напряжением 3.7V и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой. Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303 «Путаница с напряжениями»)

Соединение серии

В портативном оборудовании, требующем более высоких напряжений, используются аккумуляторные блоки с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумулятор с четырьмя 3.Последовательные литий-ионные элементы 6 В, также известные как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка из шести элементов с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

Рисунок 2: S eries соединение четырех ячеек (4s).
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Предоставлено Cadex


Если вам нужно нечетное напряжение, скажем, 9.50 вольт, соедините пять свинцово-кислотных, восемь никель-металлгидридных или никель-кадмиевых или три литий-ионных последовательно. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

Высоковольтные батареи сохраняют малый размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В.Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

Некоторые легкие гибридные автомобили работают от литий-ионных аккумуляторов 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В.Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.

Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем пакете.Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяются целиком.

Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль. Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками.(См. BU-910: Как отремонтировать аккумуляторный блок.)

На рисунке 3 показан аккумуляторный блок, в котором «ячейка 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».

Рисунок 3: S eries соединение с неисправной ячейкой.
Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
Предоставлено Cadex


Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора батарей.

Постукивание по последовательной строке

Обычной практикой является подключение к последовательной цепочке свинцово-кислотного массива для получения более низкого напряжения.Для тяжелонагруженного оборудования, работающего от аккумуляторной батареи 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение обычно доступно в промежуточной точке.

Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона батарейного блока загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи. Вот почему:

При зарядке несбалансированной свинцово-кислотной аккумуляторной батареи с помощью обычного зарядного устройства в недозаряженной части возникает тенденция к сульфатированию, поскольку элементы никогда не получают полного заряда.Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, смотрит на среднее напряжение и соответственно прекращает заряд.

Постукивание также распространено на литий-ионных и никелевых батареях, и результаты аналогичны свинцово-кислотным: сокращение срока службы. (См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения.В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.

Параллельное соединение

Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами. На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается равным 3.60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

Рисунок 4: Параллельное соединение четырех ячеек (4p).
При использовании параллельных ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

Предоставлено Cadex


Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но неисправная ячейка снизит общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

Рис. 5: Параллельное соединение / соединение с одной неисправной ячейкой.
Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. В более крупных батареях предохранитель предотвращает высокий ток, изолируя элемент.

Предоставлено Cadex

Последовательное / параллельное соединение

Последовательная / параллельная конфигурация, показанная на рисунке 6, обеспечивает гибкость конструкции и позволяет достичь требуемых номинальных значений напряжения и тока со стандартным размером ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху) Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
Эта конфигурация обеспечивает максимальную гибкость конструкции. Распараллеливание ячеек помогает в управлении напряжением.

Предоставлено Cadex

Литий-ионный аккумулятор
хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока.Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить батарею мощностью 90 кВт · ч.

Терминология для описания последовательного и параллельного соединения

В производстве аккумуляторов сначала указывается количество ячеек, соединенных последовательно, а затем — параллельно. Пример — 2с2п.В Li-ion сначала всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить химический механизм челнока, который уравновешивает заряд в верхней части заряда.«2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.

Устройства безопасности при последовательном и параллельном подключении

Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления. Хотя эти защитные устройства рекомендуются для обеспечения безопасности в меньших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов.PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя.Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)

Простые инструкции по использованию бытовых первичных батарей

  • Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
  • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
  • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
  • Выньте батареи из оборудования, когда оно больше не используется, чтобы предотвратить утечку и коррозию. Это особенно важно для первичных цинк-углеродных элементов.
  • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание. Не носите в карманах незакрепленные ячейки.
  • Храните батарейки в недоступном для маленьких детей месте.Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем при использовании батарей.)
  • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.

Простые инструкции по использованию дополнительных батарей

  • Соблюдайте полярность при зарядке вторичного элемента.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
  • Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
  • Заряжайте только при комнатной температуре.

Последнее обновление: 19 июн 2020

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Предыдущий урок

Следующий урок

Или перейти к другой артикуле

Батареи как источник питания

Добавление новой электрической цепи постоянного тока — еще немного

Вы также можете подключить новую цепь к существующей ответвленной цепи, как показано красным на рисунке 2. Как и в третьем варианте, предохранитель может или не может потребоваться в зависимости от что вы устанавливаете.В некоторых случаях это будет лучший вариант. Если вы добавляете новую лампу для чтения на диван по правому борту, имеет смысл подключить ее к выключателю «Stb Cabin Lights». С другой стороны, было бы нелогично подключать проводку нового картплоттера к той же ответвленной цепи. Прежде чем выбрать этот вариант, следует рассчитать существующую нагрузку на ответвленную цепь и убедиться, что новое оборудование не будет перегружать цепь. Если в параллельной цепи имеется несколько электрических нагрузок, которые включаются только время от времени или на короткие периоды времени, например, звуковые сигналы, электрические головки, насосы для пресной воды и т. Д.используйте Таблицу 1 для расчета существующей нагрузки, в противном случае просто сложите требования к силе тока всего, что подключено к цепи. Если существующая нагрузка плюс требования к силе тока новой цепи меньше размера выключателя, вероятно, можно безопасно добавить новую цепь. В некоторых случаях можно увеличить размер выключателя, но это неразумно без тщательной оценки размеров проводов и нагрузок в существующей ответвленной цепи. Оценка размеров проводников достойна пары абзацев и оставлена ​​для следующего раздела.

Еще один вариант подключения новой цепи — это зеленая проводка, показанная на рисунке 2. Если у вас есть запасной выключатель, цепь можно подключить как новую ответвленную цепь. Это будет лучший вариант, если вы устанавливаете новое оборудование, такое как автопилот, холодильная установка или радар. Предохранитель может не понадобиться, если автоматический выключатель подобран правильно.

Выбор провода

Теперь, когда вы знаете, где будут находиться оба конца новой проводки, следующим шагом будет определение того, как вы проложите проводку и сколько вам потребуется.Существует ряд рекомендаций по прокладке нового провода, но общий план состоит в том, чтобы подключить источник питания к оборудованию, не подвергая новый провод воздействию чего-либо, что могло бы его повредить. При планировании прокладки нового провода следует учитывать следующее:

  • Избегайте прокладки провода через участки, в которых может скапливаться вода, особенно трюмная вода.

  • Прокладывайте провода как можно дальше от источников тепла, таких как обогреватели и вытяжные системы.Минимальный зазор от влажной выхлопной системы составляет 2 дюйма (50 мм) и 9 дюймов (228 мм) от сухой выхлопной системы, если не установлена ​​теплоизоляция.

  • Провод должен поддерживаться через каждые 18 дюймов (456 мм). Используйте кабельные стяжки с монтажными отверстиями, крепления для кабельных стяжек с винтами или пластиковые зажимы для закрепления новой проводки. Неметаллические зажимы и ремни не должны использоваться в местах, где отказ может привести к опасности, например, рядом с двигателем или над проходом. Если вы используете металлические ремни или зажимы, убедитесь, что провод защищен от истирания или защемления.

  • Трос должен быть защищен от повреждений двигателями, рычагами, шестернями и т. Д. Проложите провод вдали от таких опасностей или используйте кабелепровод или дорожки качения для удержания провода.

  • Избегайте попадания проводника в пределах 24 дюймов (610 мм) от компаса. Если провод необходимо проложить ближе, чем это, к компасу, магнитное поле, создаваемое проводами, может быть сведено на нет, если положительный и отрицательный проводники скрутить вместе в пару.

После того, как вы выяснили, как вы будете проложить новый провод, достаньте рулетку и измерьте каждый участок трассы провода.Будьте щедрыми. Я всегда округляю и добавляю пару футов или полметра, для хорошей меры. Гораздо лучше остаться на пару футов, чем на два дюйма меньше. Не забудьте также измерить путь обратного провода до заземления постоянного тока.

Далее необходимо определить минимальный размер проводника. Первое, что нужно учитывать при определении минимального сечения провода, — это то, какое падение напряжения будет в цепи. Все электрические провода имеют сопротивление, и из-за этого сопротивления при протекании тока через провод будет падение напряжения.Для некоторых некритичных цепей, таких как освещение кабины, допустимо падение напряжения на 10%, но для всех других цепей максимально допустимое падение напряжения на 3%. В таблице 2 приведены допустимые максимальные падения напряжения в вольтах для систем на 12, 24 и 32 вольта.

Выключатели и заземляющие провода

Термин «земля» относится к соединению с землей, которое действует как резервуар заряда. Заземляющий провод обеспечивает проводящий путь к земле, который не зависит от нормального пути прохождения тока в электрическом приборе.На практике в бытовых электрических цепях он подключается к электрической нейтрали на сервисной панели, чтобы гарантировать достаточно низкое сопротивление для отключения автоматического выключателя в случае электрического сбоя (см. Рисунок ниже). Прикрепленный к корпусу устройства, он удерживает напряжение корпуса при потенциале земли (обычно принимаемом за ноль напряжения). Это защищает от поражения электрическим током. Заземляющий провод и предохранитель или прерыватель являются стандартными устройствами безопасности, используемыми в стандартных электрических цепях.

Нужен ли заземляющий провод? Устройство будет нормально работать без заземляющего провода, поскольку он не является частью токопроводящей дорожки, по которой к устройству подается электричество. Фактически, если заземляющий провод сломан или удален, вы, как правило, не заметите разницы. Но если на корпус попадет высокое напряжение, может возникнуть опасность поражения электрическим током. При отсутствии заземляющего провода условия опасности поражения электрическим током часто не приводят к срабатыванию выключателя, если в цепи нет прерывателя замыкания на землю.Частично роль заземляющего провода состоит в том, чтобы заставить выключатель сработать, обеспечивая путь к земле, если «горячий» провод соприкасается с металлическим корпусом устройства.

В случае электрической неисправности, которая приводит к опасному высокому напряжению в корпусе устройства, вы хотите, чтобы автоматический выключатель немедленно отключился, чтобы устранить опасность. Если корпус заземлен, в заземляющем проводе прибора должен протекать большой ток, который отключит прерыватель. Это не так просто, как кажется — привязки заземляющего провода к заземляющему электроду, вбитому в землю, обычно недостаточно для срабатывания прерывателя, что меня удивило.Статья 250 Национального электротехнического кодекса США требует, чтобы заземляющие провода были привязаны к электрической нейтрали на сервисной панели. Таким образом, при межфазном замыкании ток короткого замыкания протекает через провод заземления устройства к сервисной панели, где он присоединяется к нейтральному тракту, протекая через главную нейтраль обратно к центральному отводу сервисного трансформатора. Затем он становится частью общего потока, приводимый в действие служебным трансформатором в качестве электрического «насоса», который производит достаточно высокий ток короткого замыкания для отключения выключателя.В электротехнической промышленности этот процесс привязки заземляющего провода к нейтрали трансформатора называется «соединением», и суть в том, что для обеспечения электробезопасности вы должны быть как заземлены, так и соединены.

Это лишь верхушка айсберга, важная для правильного заземления и соединения электрических систем. См. Сайт Майка Холта для получения дополнительной информации.

Индекс

Практические концепции схем

Майк Холт

Правильное подключение al и cu

Алюминий на практике зарекомендовал себя как устойчивый к коррозии.Однако алюминий обычно является чрезвычайно реактивным материалом, который быстро окисляется. Долговечность материала обусловлена ​​стойким оксидным слоем, который образуется на его поверхности при подаче атмосферного кислорода — процесс, также известный как самопассивация.

Если электропроводящая жидкость, например конденсат, вступает в контакт с соединением алюминия и меди, это приводит к электрохимической реакции и последующему образованию контактных элементов. Ключевую роль в этом процессе играет разность потенциалов посредством электрохимических рядов.Контактный элемент образован медным электродом (анодом), электролитом (водой) и алюминиевым электродом (катодом).

Возникающее в результате напряжение закорачивается из-за контакта между медью и алюминием. Алюминий осаждается и / или корродирует в соответствии с возникающим током. Этот процесс виден как яркий след окисления и наносится даже на самые маленькие частицы меди на алюминии — это постоянная реакция, так как медь не подвергается коррозии.Если есть электрическое соединение, следствием этого является увеличение контактного сопротивления, что может привести к повышению температуры и, в худшем случае, к возгоранию.

Поэтому при комбинировании меди и алюминия важно не допустить попадания влаги на стык между обоими материалами при любых обстоятельствах. Поэтому в помещениях, где скапливается конденсат, вам необходимо защитить место контакта между медью и алюминием с помощью специальных методов обработки.

Наиболее важным шагом здесь является использование алюминиевых / медных кабельных наконечников и соединителей. Эти элементы не имеют так называемых расстояний утечки, на которых может накапливаться проводящая жидкость, которая в конечном итоге отвечает за запуск процесса окисления. В результате алюминиево-медные кабельные наконечники и соединители особенно подходят для использования в морских ветряных турбинах. Также можно использовать кабельные наконечники из луженого алюминия. Этот раствор следует использовать только в помещениях, которые постоянно остаются сухими, так как даже небольшое повреждение слоя олова достаточно, чтобы запустить процесс контактной коррозии.

Как подключить батареи параллельно или последовательно

Компания Dakota Lithium гордится отечественным производством прочных и надежных аккумуляторов LiFePO4. Вероятно, неудивительно, что мы получаем много вопросов, связанных с батареей.

Один из самых частых вопросов — «Мне нужно больше мощности! У вас есть батарея, которая может дать мне больше вольт или больше ампер? » Ответ положительный. Все наши батареи могут быть подключены для получения большей мощности для работы более мощных двигателей (напряжение — v) или дополнительной емкости (ампер-часы — Ач).Это называется последовательным или параллельным подключением батареи.

Последовательное подключение батареи — это способ увеличить напряжение батареи . Например, если вы последовательно подключите две из наших батарей на 12 В и 10 Ач, вы получите одну батарею на 24 В и 10 ампер-часов. Поскольку многие электродвигатели в байдарках, велосипедах и скутерах работают от 24 вольт, это обычный способ подключения батарей. Например, некоторые рыбаки-любители окуня, которых спонсирует Dakota Lithium, используют электрические троллинговые моторы на 36 вольт (чтобы они могли незаметно подкрасться к рыбе).Они соединяют 3 из наших аккумуляторов 170 Ач последовательно, чтобы дать им более 17 часов работы двигателя малого хода . Сока хватит на неделю рыболовного турнира!

Параллельное подключение аккумулятора — это способ увеличить время работы аккумулятора в ампер-часах (т.е. сколько времени аккумулятор будет работать от одной зарядки). Например, если вы подключите две из наших батарей 12 В, 10 Ач параллельно, вы получите одну батарею на 12 В и 20 ампер-часов. Поскольку многие небольшие электродвигатели, солнечные панели, жилые дома, лодки и большая часть бытовой электроники работают от 12 вольт, это обычный способ создания батареи, которая прослужит очень долго.Например, капитан парусника, который совершает длительные экспедиции в открытой воде и нуждается в долговечной системе питания, подключенной параллельно 80 из наших батарей 12 В, 10 Ач, чтобы создать батарею на 800 ампер-часов. Это позволяет ему запускать всю электронику своей парусной лодки до месяца без подзарядки. . Этого времени достаточно, чтобы отправиться из Сан-Франциско на Гавайи без подзарядки!

«Подождите…», — могут сказать здесь некоторые из вас. «Подключить батареи?» «Последовательно или параллельно?» Что это за черная магия ?!

Что ж, давайте углубимся в понимание физики магии.

В рамках этого поста мы будем говорить о двух разных показателях батареи: напряжение, (В) и ампер-часов, или ампер-часов, (Ач).

Если вы думаете об электричестве как о воде, протекающей по системе труб, напряжение лучше всего рассматривать как давление воды, а также как метрику, с помощью которой мы можем измерить силу протекания электрического тока. Ампер — это размер трубы, по которой течет вода, и, следовательно, показатель, с помощью которого мы измеряем, сколько мощности мы можем выдать в данный момент.Ампер-часы в данном случае аналогий с водопроводом — это мера того, сколько галлонов воды проходит по вашим трубам с течением времени.

Мне всегда казалось, что это изображение (и многим оно нравится в Интернете) помогает объяснить электричество.

Итак, что будет, если мы подключим батареи последовательно? Номинальное напряжение нового комбайна увеличивается. Например, если последовательно соединить две из наших литиевых батарей Dakota 12 В 10 Ач, вы получите удвоение напряжения или батарейный блок 24 В 10 Ач.

А как насчет параллельного подключения пары аккумуляторов? Увеличиваются ампер-часы нового комбинированного блока. Используя те же две литиевые батареи 12 В 10 Ач Dakota, вы получите удвоение ампер-часов или аккумуляторную батарею 12 В 20 Ач.

В обоих случаях добавление дополнительных литиевых батарей Dakota последовательно или параллельно просто добавит дополнительно 12 В или 10 Ач соответственно.

Довольно просто, правда? Совершенно не черная магия!

Из всего сказанного здесь следует упомянуть, что есть 3 соображения, которые необходимо принять во внимание, прежде чем подключать батареи последовательно или параллельно:

  1. Не подключайте батареи с другим химическим составом. Например, не пытайтесь подключать батареи SLA к батареям LiFePO4 последовательно или параллельно. Независимо от того, какая батарея выйдет из строя первой (в данном случае, скорее всего, это будет батарея SLA, которая умрет первой), снизится производительность других, и, таким образом, вы сократите время использования. Если бы кто-то продолжал использовать эту схему сочетания и сопоставления, обе батареи в конечном итоге стали бы настолько несбалансированными (подробнее о балансировке ячеек ниже), что они по существу станут непригодными.
  2. Также лучше использовать батареи, идентичные по напряжению и ампер-часам .Самый простой способ сделать это — просто подключить две (или более) модели одной и той же батареи (например, наши литиевые батареи Dakota 12V 10Ah). Все может быть сложно, если вы подключаете батареи, в которых есть различная электроника системы управления батареями, а варианты того, что может случиться, довольно широки. Независимо от различий в этих результатах, вы часто все равно будете иметь дико несбалансированные клетки, как в предыдущем пункте.
  3. И мы рекомендуем использовать изолирующий предохранитель при параллельном подключении! Несмотря на то, что у нас не было параллельных отчетов о проблемах с нашими более крупными батареями, мы всегда советуем проявлять осторожность.Вот наша рекомендация по параллельному подключению —

    Для наших 12 В 7-10 Ач: 4 или более параллельно подключенных блока используют какой-либо простой изолирующий предохранитель

    Для наших 12В 23-170Ач: 4 или более параллельно подключенных блока используют какой-либо простой изолирующий предохранитель

Итак, теперь, когда мы подтвердили, что вы действительно можете подключать наши батареи последовательно или параллельно, как это сделать? Что ж, вам понадобятся провода (рассчитанные на ваши конкретные требования к силе тока; мы используем многожильные провода 14-го калибра в наших наборах для электровелосипедов) с плоскими гнездовыми разъемами F2 и двумя (или более) полностью заряженными батареями.Батареи должны быть полностью заряжены, чтобы элементы были более или менее сбалансированы, чтобы максимально увеличить общее время использования. В конце концов, ваши батареи с параллельным или последовательным подключением хороши ровно настолько, насколько хорошо их самое слабое звено, и будут работать только до тех пор, пока батарея наименее заряжена.

Две батареи, соединенные последовательно

Для последовательного подключения батарей вам сначала нужно подключить положительную (+) клемму батареи A к заземлению или «отрицательную» (-) клемму батареи B.

Затем вам нужно будет подключить открытые положительные и отрицательные клеммы батарей A и B к вашему конкретному применению (например, к двигателю, фарам и т. Д.).

И вот оно! У вас есть батарея, подключенная последовательно!

Две батареи, подключенные параллельно

Как следует из названия, параллельные соединения довольно просты. Для начала вам нужно соединить положительные (+) клеммы батарей друг с другом.

Затем вам нужно соединить заземляющие или «отрицательные» (-) клеммы друг с другом.

И вот! Теперь у вас есть параллельно подключенная батарея! Вы должны иметь возможность подключить свое приложение к одной из батарей и заставить все батареи параллельно разряжаться одинаково, однако желательно, чтобы ваше приложение было подключено к положительной клемме одной батареи и отрицательной клемме другой. Это должно помочь вашим батареям оставаться сбалансированным в течение длительного времени.

Теперь, когда вы мастер магии, возможности безграничны….

Теперь у вас может быть набор батарей, подключенных последовательно и параллельно, и если да, то отлично! Тем не менее, вы также можете комбинировать параллельно и последовательно подключенные батареи вместе, опять же, последовательно или параллельно. Опять же, используя пример наших литиевых батарей Dakota, вы можете взять четыре батареи, чтобы создать большой четырехмодульный аккумуляторный блок на 24 В 40 Ач или 48 В 10 Ач!

Ресурсы

https: // batteryuniversity.ru / learn / article / serial_and_parallel_battery_configurations

https://www.batterystuff.com/kb/articles/battery-articles/battery-bank-tutorial.html

Примечания:

  • Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).
  • Аккумуляторы большинства типов подходят для последовательного и параллельного подключения. Важно использовать батареи одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров.Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи.
  • Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. В более крупных батареях предохранитель предотвращает высокий ток, изолируя элемент.
  • Соблюдайте полярность при зарядке вторичного элемента. Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
  • Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
  • Заряжайте только при комнатной температуре.
  • Две батареи, подключенные параллельно, можно использовать только одно зарядное устройство
  • Батареи, соединенные последовательно, также можно заряжать с помощью одного зарядного устройства, имеющего то же номинальное выходное напряжение зарядки, что и номинальное напряжение аккумуляторной батареи.
  • При параллельном подключении вы удваиваете емкость (ампер-часы) батареи, сохраняя при этом напряжение одной из отдельных батарей.

Как отремонтировать или заменить термостат

Починить термостат, STAT!

Если вы когда-нибудь смотрели один из этих докторских шоу, вы, вероятно, слышали фразу «Dr. Такой-то и такой-то нужен в ER – STAT! » СТАТИСТИКА означает, что немедленно нужен хороший врач. А если у вас не работает термостат, немедленно исправьте его.

В первой части вы узнали немного о термостатах и ​​их работе. Во второй части мы расскажем, как отремонтировать или заменить термостат, если он перестал работать.Если с вашим термостатом что-то не так, обычно это легко заметить. Вот несколько проблем, которые могут указывать на то, что с вашим термостатом что-то не так, и почему:

Проблема 1: Нет тепла от печи.

В этом случае первое, что вам нужно проверить, — это электрическая панель. Убедитесь, что какие-либо прерыватели отключены или сработали (или перегорел предохранитель).

Если вы не можете найти сработавших выключателей, проверьте термостат следующим образом. Плохие соединения, грязные механизмы или неисправные батареи могут повлиять на способность термостатов взаимодействовать с печью.

Ослабленные соединения
Снимите крышку с термостата и убедитесь, что все провода подключены к своим клеммам. Внимательно осмотрите каждый провод на предмет повреждений или неплотных соединений. Затяните эти соединения или замените провода, если необходимо — очевидно, после выключения питания устройства.

Грязный термостат
Если ваш термостат загрязнен, возьмите баллончик со сжатым воздухом и мягкую щетку. Установите термостат на минимальное значение и очистите биметаллический змеевик.Затем установите термостат на максимальное значение и снова очистите змеевик. Когда вы закончите, установите термостат на желаемую температуру.

Плохая батарея
Лучший способ устранить эту проблему — просто заменить батарею.

Если ни одно из этих решений не работает, возможно, вам понадобится новый термостат или новая печь. Возможно, пришло время вызвать профессионала.

Проблема 2: Нагрев не достигает запрограммированной температуры.

Термостат не будет работать должным образом, если он погнут.Используйте уровень торпеды и убедитесь, что он ровный. Выравнивание термостата должно решить эту проблему. Если это не так, убедитесь, что все вентиляционные отверстия свободны и работают. Как бы странно это ни звучало, вы также можете проверить, нет ли сквозняков, которые могли открываться недавно. Если вам все это не удалось, позвоните нам.

Проблема 3: Печь быстро включается и выключается.

Возможно, у вас неплотное соединение или загрязнен термостат. Вы уже знаете, как справиться с этими двумя проблемами (см. Выше).Эти проблемы являются наиболее частыми источниками этой проблемы. К счастью, их тоже легко исправить.

Если очистка термостата или затягивание его соединений не решает проблему, подумайте о замене термостата. Рекомендуем перейти на умный цифровой термостат. Цифровые термостаты помогают сделать ваш дом более комфортным и даже сократить ваши счета за отопление или охлаждение. Согласно Energy Star, вы можете сэкономить 50 долларов в год на счетах за электроэнергию с помощью интеллектуального термостата.

Часто самый простой и эффективный способ решить проблему с термостатом — это просто полностью заменить термостат.Вот как начать этот процесс:

Что мне нужно знать о замене термостата?

Первое, что нужно сделать: вы должны решить, какой термостат вам нужен.

Механический
Если вам нужен обычный механический термостат, вы все равно можете купить знаменитый круглый термостат с циферблатом. Современные модели имеют яркие дисплеи и простые в использовании интерфейсы.

Программируемый
Следующий шаг — программируемый термостат. Он не подключается к Интернету, поэтому вам придется установить температуру и цикл нагрева или охлаждения.Программируемые термостаты экономичны и позволяют контролировать, отапливается или охлаждается ваш дом. Обратной стороной является то, что они не автоматические, и вы не можете управлять ими удаленно или с помощью голосовой активации.

Smart
С помощью интеллектуальных термостатов вы можете удаленно управлять своей системой HVAC. Например, если ваши планы внезапно изменятся, вы можете использовать телефон, чтобы немедленно изменить температуру в доме. Некоторые умные термостаты даже имеют несколько датчиков, чтобы обеспечить более сбалансированное отопление или охлаждение во всем доме.Некоторые могут даже отслеживать ваши предпочтения и использовать эти данные для оптимизации графика обогрева и охлаждения.

Интеллектуальные термостаты энергоэффективны, уменьшают выбросы углекислого газа, снижают потребление энергии в вашем доме и экономят деньги. Они также более удобны, потому что вы можете автоматизировать нагрев и охлаждение практически без ручного ввода. Единственная основная проблема интеллектуальных термостатов заключается в том, что они дороги и не работают со всеми системами отопления, вентиляции и кондиционирования воздуха.

Если вам нужен новый термостат, вы, вероятно, сможете заменить его самостоятельно.К сожалению, мы не можем дать вам пошаговые инструкции, как это сделать. Просто существует слишком много моделей, вариантов и переменных.

При установке термостата обязательно следуйте инструкциям, прилагаемым к нему. Если вы находите эти инструкции слишком запутанными (мы вас не виним!), Подумайте о том, чтобы вызвать профессионального электрика.

Что бы вы ни выбрали, всегда делайте следующие две вещи. Во-первых, правильно утилизируйте старый термостат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*