Фундамент расход арматуры на: Расход арматуры на 1 куб м. бетона.
- Расход арматуры на 1 куб м. бетона.
- Как рассчитать количество арматуры для заливки фундамента?
- Схемы армирования ленточного фундамента
- Расчет диаметра продольной арматуры
- Расчет диаметра поперечной и вертикальной арматуры
- Расчет количества продольной арматуры
- Расчет количества вертикальной и поперечной арматуры
- Расчет количества вязальной проволоки
- Расход арматуры в сравнении с плитным и столбчатым фундаментом
- Примерный расчет арматуры для плитного фундамента
- Примерный расчет арматуры для столбчатого фундамента
- Выводы:
- Как подсчитать сколько арматуры нужно на фундамент
- Сколько арматуры на 1 м3 бетона для фундамента: расход, норма
- Cколько арматуры потребуется на фундамент: как подсчитать расход?
- Сколько арматуры нужно на 1 куб бетона и как правильно посчитать?
- Расчет арматуры для фундамента – рекомендации от ТК Газметаллпроект
- Проект железобетонных опор: ACI 318-14 и IS456
- ФУНДАМЕНТЫ И ФУНДАМЕНТЫ
- 4 метода укрепления фундамента существующего дома
- DOE Building Foundations Section 4-1
- Фундамент крепкого дома: материалы, вес и процесс
- Руководство по строительству жилых домов для одной семьи
- Плотный фундамент — когда использовать, типы, конструкция
Расход арматуры на 1 куб м. бетона.
При любых работах с бетоном стоит уделить особое внимание расчёту арматуры. Нехватка арматуры снижает прочность всей конструкции, а её перерасход влечет за собой лишнюю трату денег. В этой статье мы подробно рассмотрим вопрос сколько надо арматуры на куб бетона.
От чего зависит норма расхода арматуры на 1 куб бетона
При различных типах строения используется разное количество арматуры. Сама арматура разнится по классу и весу. По площади сечения арматуры можно узнать вес 1 метра. Более подробно о классах и видах арматуры можно прочитать в специальной статье: арматура, виды, характеристики, выбор, вязка, гибка арматуры.
Для вычисления количества связки и арматуры в 1 м³ объема бетона потребуется такая информация:
- Тип фундамента.
- Площадь сечения прутьев и их класс.
- Общий вес здания.
- Тип почвы.
Различают несколько основных типов бетонных фундаментов: ленточный, плитный и столбчатый. Более подробно о выборе типа фундамента и характеристках каждого из них можно прочитать в статье: выбор типа фундамента, его расчёт, технологии строительства фундамента. В этой же статье можно узнать о расчёте веса здания и как учитывать тип грунта при выборе типа и размеров фундамента.
Арматурная конструкция для фундамента.
Не смотря на большие различия в возможных конфигураций фундамента, есть общие рекомендации. Так для строительства небольшого деревянного домика потребуется арматура с сечением не больше 10 мм. Для создания фундамента большого кирпичного дома потребуется уже не меньше 14 мм в толщину. Прутья устанавливаются в фундаменте всреднем через 20 см от друг друга. В связке находятся 2 пояса: верхний и нижний. Измерив общую длину и глубину фундамента можно с точностью определиться, сколько метров арматуры и уже исходя из этих чисел посчитать их суммарный вес. При этом стоит учитывать, что арматуру не надо сильно заглублять, так как основное растяжение создается на поверхности.
Согласно строительным нормам на 1 кубический метр бетона расходуется не менее 8 килограмм арматуры.
Расчёт расхода арматуры на 1 куб.м. для ленточного фундамента
Для примера рассмотрим ленточный фундамент размерами: 9 на 6 метров, шириной ленты 40 см и высотой 1 метр. Сделаем усредненный типовой расчёт, который вполне подойдет для грунта не подверженного сильному пучению. Каркас состоит из рядов: горизонтальных, вертикальных и поперечных.
Сначала рассчитаем горизонтальную арматуру. Между горизонтальными рядами арматуры расстояние в 30 см, и сами ряды должны быть в бетоне на глубине 5 см от поверхности. Значит для фундамента высотой 1 метр требуется 4 ряда арматуры. Если фундамент шириной до 40 см то в каждом ряду ставятся по 2 арматурных прута. Периметр нашего фундамента равен 30 метров. По всему периметру фундамента проходит 4 ряда, и в каждом 2 прута. Значит всего 8 прутов по периметру фундамента. Находим общую длину горизонтальной арматуры 30*8=240 м. Что при её диаметре в 12 мм (0. 888 кг за метр прута) получится 240*0.888=213 килограмм.
Расчёт расхода арматуры на куб бетона. На данной схеме арматура уложена в два ряда по три прута в каждом.
Отступы арматуры от края бетона на 5 см служат для создания защитного слоя бетона вокруг арматуры. Для фиксации арматуры на нужно расстоянии от опалубки до и во время заливки бетона используются специальные подставки или фиксаторы для арматуры. Более подробно о том, что такое защитный слой бетона и о видах фиксаторов Вы можете прочитать в специальной статье: фиксаторы для арматуры, их виды, характеристики, правильное использование.
Поперечная арматура нужна для связи горизонтальных и вертикальных рядов. Для этих целей применяется арматура диаметром в 6 мм (0.222 кг за кг) при шаге в 30 см. Длинна каждого поперечного прутка в горизонтальной плоскости равна 30 см. В вертикальной — 90 см. От ширины и высоты фундамента мы отняли по 5 см с каждой стороны для создания защитного слоя бетона. В одном сечении получаем 4 прутка по 30 см и 2 прутка по 90 см. Получается, что в одном сечении 4*30+2*90= 300 см или 3 метра арматуры. Шаг сечений 0.3 метра, зная длину ленточного фундамента, находим общее количество поперечных сечений: 30/0.3=100 шт. Тогда общая длина поперечной арматуры 3*100=300 м. А вес 300*0,222=66,6кг.
Суммарный вес армированной системы выйдет 213+66,6=279,6 кг для ленточного фундамента 6 на 9 м то есть объемом 12 куб м.
Таким образом, для рассматриваемого ленточного фундамента на 1 кубический метр бетонного раствора расход арматуры:
- диаметром 12 мм: 213/12=17,8 кг на 1 м куб бетона,
- диаметром 6 мм: 66,6/12=5,6 кг на 1 м куб бетона.
Композитная арматура в среднем в 4 раза легче, чем сталь, потому для вычисления её расхода можно делить вес арматуры в четыре раза.
Ориентировочные показатели расхода арматуры на 1 кубический метр бетона для разных типов фундамента:
- для столбчатого фундамента — 10 кг на 1 куб м бетона;
- для ленточного фундамента — 20 кг на 1 куб м бетона;
- для плиточного фундамента — 50 кг на 1 куб м бетона.
Для того чтобы посчитать сколько арматуры нужно на 1 кубический метр бетона более точно, следует сделать точный расчёт арматуры для фундамента. Для этого можно воспользоваться более подробными материалами на странице: расчёт арматуры.
Как рассчитать количество арматуры для заливки фундамента?
Казалось бы, всем понятно, что прочность и долговечность фундамента – это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.
Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:
- Ленточный фундамент – наиболее популярный вид фундамента для частных домов.
- Свайный буронабивной – используется на слабом грунте при глубине промерзания до 1,5 метров.
- Свайно-ростверковый – это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
- Столбчатый фундамент – применим для легких домов и построек.
- Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.
Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом..
Схемы армирования ленточного фундамента
Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:
- Четырьмя стержнями арматуры;
- Шестью стержнями арматуры;
- Восемью стержнями арматуры.
Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?
Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см.
Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:
5+40+5=50 см.
При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.
Расчет диаметра продольной арматуры
От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.
Второй фактор – это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.
Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.
Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:
80*50=4000 см2
Тогда суммарная площадь поперечного сечения арматуры получится:
4000*0,1%=4 см2
При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:
Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.
Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.
Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.
Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.
Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м – 12 мм.
Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.
Расчет диаметра поперечной и вертикальной арматуры
Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.
Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:
В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.
Расчет количества продольной арматуры
Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.
К примеру, наш дачный дом имеет вот такую схему фундамента:
При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:
6+8+6+8=28 м
К периметру прибавим еще длину несущей стены:
28+6=34 м
Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:
34*4=136 м
При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.
При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.
Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:
12*30=360 мм (36 см)
Чтобы добавить припуски с учетом нахлеста, можно:
- Посчитать количество стыков;
- Прибавить 10-15% к общей сумме длины арматуры.
Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:
136+136*0,1=149,6 м
Учитываем то, что в угловой части фундамента арматуру придется изгибать с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:
149,6+20=169,6 м
Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.
Расчет количества вертикальной и поперечной арматуры
После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.
Взглянем на схему поперечного сечения фундамента:
Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:
40+70+40+70=220 см (2,2 метра)
Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.
220+20=240 см (2,4 м)
Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:
- Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
- Начертив схему фундамента и подсчитав места связок на чертеже.
Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.
Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.
(6+12)*2=36 штук
Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:
9*3+36=63 перемычки
Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:
2,4*63=151,2 м
Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.
Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.
170+170*0,1=187 метров диаметром 12 мм
151,2+151,2*0,1=166,22 метров диаметром 6 мм
Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре – 0,222 кг.
Итого:
187*0,89=166,43 кг
166,22*0,222=39,9 кг
Расчет количества вязальной проволоки
В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.
Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).
Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.
63*4=252 соединения
Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для каждого соединения:
252*0,3=75,6 метров
Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.
Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.
Расход арматуры в сравнении с плитным и столбчатым фундаментом
А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.
Примерный расчет арматуры для плитного фундамента
Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.
Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.
6/0,2=30 штук по 8 метров
8/0,2=40 штук по 6 метров
Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.
30*2+40*2=140 штук
В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.
140+30=170 штук
170*6=1020 м рифленой арматуры
После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.
30*40=1200 соединений
Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.
1200*0,1=120 метров вертикальной арматуры
Общее количество арматуры для плитного фундамента составит:
1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.
Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.
1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.
Примерный расчет арматуры для столбчатого фундамента
В принципе, для легкого дачного дома подойдет и столбчатый фундамент.
Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.
Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.
Делим периметр основания на шаг между сваями и получаем их количество:
34/1,5=22,6
Округляем до 23 столбов.
Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами – из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:
(1,5+0,3)*3=5,4 м
На все сваи уйдет:
5,4*23=124,2м рифленой арматуры
Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:
3,14*0,2=0,628 м
Таких хомутов на одну сваю потребуется, как минимум, 4:
0,628*4=2,512 м
На все 23 столба гладкой арматуры потребуется:
2,512*23=57,776 м ≈58 м
Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:
3*4*0,3=3,6 метра проволоки на каждый столб
3,6*23=82,8 метра проволоки
Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.
Выводы:
В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.
Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.
Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.
Как подсчитать сколько арматуры нужно на фундамент
Перед тем как заказывать арматуру у поставщика, цены которого показались наиболее приемлемыми, необходимо скрупулезно рассчитать требуемый метраж на фундамент. Ниже мы покажем, насколько просто с этим можно справиться, и рассмотрим расчет для различных типов оснований.
Количество арматуры для разных фундаментов
Очевидно, что типы железобетонных оснований различаются не только по объему бетона, но и по метражу арматурных стержней для металлического каркаса фундамента. Больше всего прутьев потребуется на плитный фундамент, далее идут ленточные и свайные буронабивные фундаменты.
Рассмотрим случай, когда фундамент для дома имеет размеры в плане 6 × 6 м, и проведем расчет метража арматуры.
Метраж на ленточный фундамент
Для вязки арматурного каркаса ленточного фундамента обычно используются гладкие стержни и стержни с периодическим профилем. Метраж их будет напрямую зависеть от ширины и длины ленты, а также периметра основания. Предположим, что в нашем случае ширина ленты составляет 300 мм, высота – 1 000 мм. Шаг между монтажной (гладкой) арматурой выбираем равным 500 мм. Какая арматура нужна для фундамента – это уже вы сами определяйтесь, исходя из нагрузок и показателей грунта.
Считаем общую длину ленты под дом 6 × 6 м (с поправкой в большую сторону – без учета толщины ленты):
6 × 4 = 24 м.
Считаем метраж прутьев периодического профиля (ребристой) при условии, что лента будет состоять из двух поясов по два стержня в каждом:
24 × 2 × 2 = 96 м.
Учитываем, что в угловой части фундамента прутья придется изгибать и делать выпуски в перпендикулярную ленту длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков, или 16 м всего на весь фундамент. Прибавляем это количество к метражу ребристых прутьев и получаем метраж арматуры периодического профиля на фундамент:
96 + 16 = 112 м.
Теперь необходимо подсчитать, сколько нужно гладких прутьев. Для этого находим количество сопряжений арматуры с учетом принятого шага в 500 мм:
24/0,5 = 48 шт.
Определяем сумму вертикально и горизонтально ориентированной поперечной арматуры (с запасом – без учета толщины защитного слоя):
(0,3 + 1) × 2 = 2,6 м.
Определяем общий метраж гладких прутьев:
2,6 × 48 = 124,8 м ≈ 125 м.
Итого на данный фундамент потребуется 112 м прутьев периодического профиля, 125 м – гладких.
Метраж на плитное основание
На плитный фундамент в основном идет ребристая арматура (диаметр арматуры для фундамента в расчетах расхода материала роли не играет) – формируются две сетки с ячейками 200 × 200 мм.
Для начала определяем количество продольных и поперечных прутьев (в нашем случае оно одинаково):
6/0,2 = 30 шт.
Общее количество прутьев на одну сетку будет больше в 2 раза:
30 × 2 = 60 шт.
Длину прутьев принимаем равной 6 м (с запасом – не учитывая величину защитного слоя бетона), поэтому метраж арматуры на одну сетку составит:
60 × 6 = 360 м.
Соответственно, на весь фундамент (2 сетки) прутьев потребуется вдвое больше:
360 × 2 = 720 м.
Расстояние между сетками можно выдерживать специальными штучными элементами, а не монтажной арматурой, – так удобнее.
Метраж для буронабивных свай
Предположим, что мы будем использовать сваи диаметром 200 мм и длиной 1,5 м. Шаг между опорами составит 1,5 м. Свая будет армироваться тремя прутами рабочей арматуры и двумя хомутами из гладкой. Выпуски, используемые для связи свай с железобетонным ростверком, принимаем длиной 300 мм.
Рассчитываем требуемое количество свай, учитывая полученную ранее величину периметра основания (24 м) и шаг между опорами:
24/1,5 = 16 шт.
Считаем, сколько нужно ребристых стержней на одну сваю:
(1,5 + 0,3) × 3 = 5,4 м.
На все сваи уйдет:
5,4 × 16 = 86,4 м ≈ 87 м прутьев периодического профиля.
Для формирования каркаса будут использоваться гладкие прутья, согнутые в окружность. Считаем длину этой окружности (с запасом – по диаметру сваи):
3,14 × 0,2 = 0,628 м.
Таких хомутов на одну сваю потребуется как минимум два:
0,628 × 2 = 1,256 м.
На все 16 буронабивных свай гладких прутьев потребуется:
1,256 × 16 = 20,096 м ≈ 20 м.
Итого на выбранный нами фундамент необходимо 87 м прутьев периодического профиля, 20 м – гладких.
В заключение статьи
Казалось бы, узнать требуемое количество арматуры – очень просто! Но будьте внимательны при расчетах, несколько раз перепроверьте свои вычисления! Гораздо дешевле сразу заказать необходимый метраж, чем потом докупать.
Загрузка…
Сколько арматуры на 1 м3 бетона для фундамента: расход, норма
При возведении крупных промышленных и жилых строительных объектов вопроса о том, сколько арматуры требуется на заливку 1 м3 бетона, не возникает: нормы ее расхода регулируются соответствующими ГОСТами (5781-82, 10884-94) и изначально закладываются в проект. В частном строительстве, где мало кто обращает внимание на требования нормативных документов, придерживаться норм расхода арматурных изделий все-таки следует, так как это позволит создать надежные бетонные конструкции, которые прослужат вам долгие годы. Для определения таких норм можно воспользоваться несложной методикой, позволяющей вычислить их с помощью несложных расчетов.
Арматурный каркас напрямую определяет эксплуатационные характеристики фундамента
Использование железобетонных конструкций в частном строительстве
Цемент, как всем хорошо известно, является материалом, без которого нельзя обойтись в строительстве. То же самое можно сказать и о железобетонных конструкциях (ЖБК), создаваемых посредством армирования цементного раствора металлическими прутками для повышения его прочности.
Как в капитальном, так и в частном строительстве могут использоваться и монолитные, и сборные ЖБК. Наиболее распространенными типами последних являются фундаментные блоки и готовые плиты перекрытия. В качестве примеров монолитных конструкций, выполненных из железобетона, можно привести заливной фундамент ленточного типа и цементные стяжки, которые предварительно армируются.
Строительство ленточного фундамента
В тех случаях, когда строительство выполняется в местах, куда затруднена подача подъемного крана, плиты перекрытия также могут выполняться монолитным способом. Поскольку такие ЖБК являются очень ответственными, то при их заливке следует строго соблюдать расход арматуры на куб бетона, оговоренный в вышеуказанных нормативных документах.
Монтаж конструкций из арматуры в условиях частного строительства лучше всего выполнять при помощи вязальной проволоки из стали, так как использование для этих целей сварки может не только ухудшить качество и надежность создаваемого каркаса, но и увеличить стоимость выполняемых работ.
Дорогостоящий пистолет для вязки арматуры успешно заменяется самодельным крючком, согнутым из проволоки и закрепленным в патроне шуруповерта
Как определить расход арматуры
Нормы расхода арматурных элементов, рассчитываемые на м3 конструкций из железобетона, зависят от целого ряда факторов: назначения таких конструкций, используемых для создания бетона цемента и добавок, которые в нем присутствуют. Такие нормы, как уже говорилось выше, регулируются требованиями ГОСТов, но в частном строительстве можно ориентироваться не на этот нормативный документ, а на Государственные элементарные сметные нормы (ГЭСН) или на Федеральные единичные расценки (ФЕР).
Так, согласно ГЭСН 81-02-06-81, для армирования монолитного фундамента общего назначения, объем которого составляет 5 м3, нужно использовать 1 тонну металла. При этом металл, под которым и подразумевается арматурный каркас, должен быть равномерно распределен по всему объему бетона. В сборнике ФЕР, в отличие от ГЭСН, средний расход арматуры в расчете на 1 м3 бетона приводится для конструкций различных типов. Так, по ФЕР, для армирования 1м3 объемного фундамента (до 1 м в толщину и до 2 м в высоту), в котором имеются пазы, стаканы и подколонники, нужно 187 кг металла, а для бетонных конструкций плоского типа (например, бетонного пола) – 81 кг арматуры на 1 м3.
Расчетная масса 1 м стальной арматуры
Удобство использования ГЭСН заключается в том, что с помощью этих нормативов можно также определить точное количество раствора бетона, используя для этого коэффициенты, учитывающие трудно устранимые отходы арматуры, которая в таком растворе будет содержаться.
Однако, конечно, определить более точное количество арматуры, которое вам потребуется для бетона фундамента или перекрытия, позволяют вышеуказанные ГОСТы.
Минимальные нормативные диаметры арматуры
Параметры арматуры в зависимости от ее диаметра
Количество арматуры для укрепления фундамента
Для того чтобы определить количество арматуры, которое необходимо для укрепления бетона, требуется учесть следующие данные:
- тип фундамента, который может быть столбчатым, плитным или ленточным;
- площадь фундамента (в м2) и его высота;
- диаметр арматурных прутков, а также их тип;
- тип грунта, на котором возводится строение;
- общий вес строительной конструкции.
Принцип армирования ленточного фундамента
Для армирования фундаментов плитного и ленточного типов преимущественно применяются изделия с ребристым профилем класса A-III и размерами поперечного сечения не меньше 10 мм. В качестве элементов для соединения каркасных решеток допускается использование арматуры гладкого типа и меньшего сечения. Бетон монолитного фундамента для тяжелых строений армируется прутками большего сечения – 14–16 мм.
Арматурный каркас состоит из нижнего и верхнего поясов, в каждом из которых прутки укладываются таким образом, чтобы размер формируемых ячеек составлял приблизительно 20 см. Пояса соединяются между собой вертикальными прутьями, которые фиксируются при помощи вязальной проволоки. Высота и площадь фундамента позволит вам определить, сколько метров арматуры вам потребуется для укрепления бетона. Зная расход арматуры на 1 м3 вашей ЖБК, вы сможете подобрать размер поперечного сечения прутков, который будет зависеть от толщины фундамента.
Схема раскладки арматуры ленточного фундамента
После того как вы определите, сколько арматуры вам будет нужно, вы должны распределить конструкцию из нее таким образом, чтобы на 1 м3 бетона приходилось требуемое количество массы металла. Создавая арматурный каркас, следует обращать внимание на то, чтобы все его элементы были покрыты слоем бетона толщиной не меньше 50 мм.
Определить, сколько нужно арматуры для укрепления ленточного фундамента, несколько проще, чем для более массивных конструкций из бетона. В этом случае также следует придерживаться норм, оговоренных в ФЕР – 81 кг металла на 1 м3 раствора бетона. Ориентироваться следует на размеры вашего ленточного фундамента. Например, если его ширина не превышает 40 см, то на формирование одного армирующего пояса можно пустить два прута с поперечным сечением 10–12 мм. Соответственно, если ширина больше, то и количество арматурных прутков в ряду следует увеличить.
Расчетные площади пеперечного сечения в зависимости от количества стержней
Для фундаментов, глубина которых не превышает 60 см, арматурный каркас создают из двух уровней. Если глубина больше, то количество уровней каркаса рассчитывают так, чтобы они располагались на расстоянии 40 см друг от друга. Для соединения армирующих поясов между собой, как уже говорилось выше, используются вертикальные перемычки, которые монтируют по всей длине каркаса, располагая их с шагом 40–50 см.
Способы армирования углов
Составив несложный чертеж вашего будущего армирующего каркаса и проставив на нем все размеры, вы сможете легко рассчитать, сколько всего метров прутков определенного диаметра вам будет нужно. Вычислив общую длину прутков, вам нужно будет разделить ее на стандартную длину арматуры (5 или 6), и вы узнаете, сколько таких прутков надо приобрести.
Если вы собираетесь заливать ленточный фундамент для легкого строения, а почва на вашем участке крепкая, то для укрепления бетона можно использовать арматуру сечением и до 10 мм, создавая из нее каркас по описанной выше методике.
Оценка статьи:
Загрузка. ..
Поделиться с друзьями:
Cколько арматуры потребуется на фундамент: как подсчитать расход?
Прежде чем начинать строительство железобетонного фундамента, необходимо определиться с количеством арматуры для создания каркаса фундамента. В расчет принимается ребристая арматура, как основа для верхнего и нижнего поясов, а также гладкие прутья, выполняющие функцию соединения поясов между собой.
Чтобы подсчитать, сколько арматуры на фундамент потребуется, нужно знать размеры фундамента и его тип. Самый большой расход арматуры имеет плиточный фундамент.
Свайный и ленточный фундаменты менее затратны в этом отношении. Для примера рассмотрим фундамент двух типов для дома 6 х 6 м, имеющего внутреннюю несущую стену также длиной 6 м. Допустим, глубина фундамента будет равняться 0,7 м, а его планируемая ширина — 0,3 м.
Расход арматуры на ленточный фундамент
Основная изгибающая нагрузка приходится на верхний и нижний пояса. Каждый из этих поясов состоит из двух продольных кусков арматуры. Для них берется ребристая арматура, которая отличается своей толщиной и прочностью. Все перемычки, и вертикальные, и поперечные, не несут на себе нагрузки, поэтому они представляют собой гладкие прутки меньшего диаметра. Армирование будем выполнять при помощи 4 продольных прутьев. Пересечение основных продольных участков с горизонтальными и вертикальными поперечинами будет осуществляться с шагом 50 см.
Прежде всего, подсчитывается общая длина фундамента. В приведенном примере она будет составлять 24 м + 6 м = 30 м. Метраж ребристой арматуры для продольного каркаса будет составлять 30 х 4 = 120 м. Количество перемычек потребуется использовать 61 штуку. На каждое соединение потребуется около 1,6 м гладкого прута с учетом размеров каркаса.
Таким образом, нам потребуется 97,6 м гладкого прута. Каждое из соединений будет связано в 4 местах. Если взять в расчет, что на одну связку будет израсходовано 30 см проволоки, итоговое ее количество составит 30 см х 61 х 4 = 73 м.
Расход арматуры на фундамент
плитный
Плитный фундамент требует больших вложений, как в плане бетона, так и в количестве арматуры. Для его создания применяется ребристая арматура.
Сколько арматуры надо на фундамент плитного типа дома с такими же размерами (6 х 6 м)? Следует сразу пояснить, что каркас такого фундамента представляет собой сетку с размерами 20 х 20 см. Для ее формирования нужно уложить в один ряд 31 кусок ребристой арматуры, а затем, перпендикулярно этим кускам, уложить еще ряд из 31 прутка. Это будет один пояс. Всего будет уложено 62 прутка.
Поскольку каркас состоит из нижнего и верхнего поясов, то количество прутков составит уже 124 штуки. Зная длину одного прутка, получаем общее количество арматуры для двух поясов: 6 м х 124 = 744 м арматуры. Верхний армирующий пояс обязательно должен быть соединен с нижним поясом. Соединения выполняются в местах стыков продольных и поперечных прутков. Несложно подсчитать количество таких соединений: 31 х 31 = 961. В зависимости от предполагаемой толщины плиты рассчитывается длина одной такой перемычки.
Допустим, толщина фундаментной железобетонной плиты — 20 см. Армирующий слой проходит в 5 см от низа и от верха плиты. Поэтому рассчитываем длину прутка так: 20 см — 10 см = 10 см. Общее количество арматуры достигнет 10 х 961 = 96 м (округленно). Зная, что на создание поясов ушло 744 м, можно подсчитать общую длину требуемой арматуры: 744 м + 96 м = 840 м.
Вначале формируется нижний пояс, затем к нему крепятся перемычки, после чего к перемычкам крепятся поперечные и продольные куски арматуры верхнего пояса. Места всех соединений связываются проволокой. В каждом из поясов насчитывается 961 соединение. Итого 1922 соединения. Поскольку на одно соединение уходит 30 см проволоки, то ее количество составляет около 576 м.
Как видите, подсчитать нужное количество арматуры вполне возможно даже самостоятельно. Выполнив такие расчеты, вы сэкономите средства, которые могли бы пойти на закупку лишнего количества арматуры. Либо же вам не придется дополнительно докупать арматуру в случае, если ее не хватит в процессе строительства фундамента.
Сколько арматуры нужно на 1 куб бетона и как правильно посчитать?
В вопросе, сколько арматуры пойдет на 1 м3 бетона не стоит «изобретать велосипед». Законодатели «строительных норм» давным-давно рассчитали, подчитали и проверили практикой количество арматуры на 1 м3 бетона и изложили их в соответствующих нормах и правилах:
- Государственные элементные сметные нормативы. В соответствии с этим документом масса стержней для армирования бетона должна составлять 1 тонну на 5 м3, то есть 200 кг на 1 м3;
- Федеральные единичные расценки. В соответствии с этим документом для железобетонных конструкций высотой до 2 метров, масса стержней должна быть не менее 187 кг на «куб» бетона;
- Для наиболее точных подсчетов рекомендуется пользоваться данными документов ГОСТ 5781-82, ГОСТ 10884-94 и данными таблицы зависимости массы стальных стержней от их длины и марки.
как рассчитать необходимое количество арматуры на фундамент?
Таблица зависимости массы железных прутьев от их длины и марки
Диаметр стержня соответствующий номеру профиля арматуры | Масса арматуры, кг/погонный метр | Количество погонных метров в 1 тонне арматурных стержней |
5,5 | 0,187 | 5347 |
6 | 0,222 | 4504 |
8 | 0,395 | 2531 |
10 | 0,617 | 1620 |
12 | 0,888 | 1126 |
14 | 1,21 | 826 |
16 | 1,58 | 633 |
18 | 2 | 500 |
20 | 2,47 | 405 |
22 | 2,98 | 335 |
25 | 3,85 | 260 |
28 | 4,83 | 207 |
32 | 6,31 | 158 |
Рассмотрим несколько примеров, сколько арматуры нужно на 1 куб бетона для заливки фундаментов разных видов
Плитный фундамент. В любом случае на выбор марки и диаметра арматуры влияет тип почвы и вес возводимого сооружения. Если грунт стабильный с малой вероятностью зимнего пучения, допустимо армировать конструкцию прутьями Ø 10 мм (для деревянных зданий) и Ø14-16 мм для каменных (кирпичных, блочных, пеноблочных и шлакоблочных) домов. Это значительно удешевляет стоимость конструкции.
В качестве примера можно рассмотреть расчет количества прутьев арматуры для строительства монолитного фундамента под одноэтажный дом 6х6 метров в плане.
Изготавливаем каркас из арматурных прутьев диаметром 14-16 мм с шагом между прутками 200 мм. Для фундамента здания размерами 6х6 метров потребуется установить 31 пруток в одном направлении и 31 пруток в противоположном направлении. То есть 62 стержня.
Также монолитный фундамент должен иметь два арматурных пояса – верхний и нижний. Для их изготовления потребуется 124 «арматурины» длиной 6 метров. Зачастую бывает трудно приобрести прутки нужной длины. Поэтому для точности подсчетов необходимо определить количество погонных метров прутка – 124х6=744 метра. Если быть очень точным, то к этой цифре стоит добавить длину «перехлеста» которым будет соединяться пруток с прутком (не менее 100-150 мм на одно соединение). Длина перехлестов подсчитывается индивидуально в каждом конкретном случае в зависимости от длины имеющейся арматуры.
Оба пояса должны быть соединены в единое целое. Для определения пересечений, «наш» 31 пруток умножаем на 21 и получаем – 961 пруток. В случае если пояс каркаса имеет мощность 0,2 метра и расположен в 0,05 метрах от поверхности почвы длина соединительных «арматурин» составляет не менее 100 мм. Другими словами для соединения каркасов потребуется 96 метров стержней или 960 штук.
Получается, что для возведения фундамента под частный дом размерами в плане 6х6 метров потребуется закупить 240 погонных метров арматуры диаметром 14-16 мм. Напоминаем, что вы можете воспользоваться нашими строительными калькуляторами для подсчета арматуры, песка, бетона и других материалов.
Расчет арматуры для фундамента – рекомендации от ТК Газметаллпроект
Любой жилой дом, производственное, офисное или складское помещение монтируются на заранее подготовленный фундамент. Конструкция основания может отличаться в зависимости особенностей почвы, климатических характеристик региона, массы и размеров здания. При этом армирование фундамента является обязательным условием длительной эксплуатации объекта, без повреждений и деформаций конструкции.
Назначение арматурного каркаса в фундаменте здания
Существует несколько типов оснований, выполняемых из бетонного раствора. Наиболее востребованными считаются плитные и ленточные фундаменты, мелко- и глубокозаглубленные. Также применяются основания на сваях, глубина заложения которых зависит от параметров грунта и уровня промерзания почвы.
Для армирования фундамента применяются металлические прутья с рифленой или гладкой поверхностью, которые соединяются в жесткий и прочный каркас. Армирование выполняется в следующих целях:
- стальная основа принимает нагрузки на растяжение и изгиб, равномерно распределяет их по всей конструкции основания;
- каркас исключает деформации бетона, позволяет избежать или минимизирует образование трещин и других дефектов фундамента;
- за счет арматурного каркаса удается снизить объем используемого для заливки основания бетонного раствора, уменьшить и снизить стоимость конструкции;
- армирование делает возможным строительство дома или производственного здания на слабых грунтах, в том числе сыпучих, болотистых, в регионах с экстремально низкими зимними температурами;
- возрастает несущая способность основания, арматура делает фундамент более приспособленным к высоким нагрузкам по массе, усилиям на растяжение и деформацию.
После заливки фундамента бетонный раствор постепенно набирает прочность. При этом монолит приобретает высокую прочность к сжатию, но не отличается хорошими показателями на растяжение. Арматурный каркас позволяет поднять данные параметры на должный уровень.
Как правильно рассчитать арматуру для фундамента
Для монтажа прочного и долговечного фундаментного основания необходимо выполнить расчет арматуры и каркаса. Такой подход обеспечивает соответствие требованиям нормативных документов. Для правильного расчета необходимо учитывать следующие моменты:
- в качестве конструктивных элементов лучше всего закладывать металлические прутья с рифленой поверхностью, толщина которых начинается от 12 мм – посмотреть каталог арматуры для фундамента;
- оптимальным является использование проката марки А400, А500 и А240;
- все расчеты выполняются в соответствии с требованиями СНиП 52-01-2003 и 2.02.01-83;
- при проектировании учитываются характеристики грунта, для каменистой, болотистой, сыпучей почвы арматурный каркас будет отличаться;
- обязательно учитывается при расчетах суммарная нагрузка на конструкцию, которая складывается из собственного веса фундамента, массы стен, перекрытий, перегородок, установленного в здании оборудования и предметов повседневного использования, среднегодового количества осадков;
- обязательно учитывается запас прочности, каркас должен быть прочнее расчетных показателей на 5-10%;
- несмотря на большое количество доступных онлайн-калькуляторов, расчет арматуры с их использованием получится приблизительным, желательно воспользоваться услугами специалиста в данной отрасли.
Выполняя указанные правила расчета арматурного каркаса можно быть уверенным в прочности и долговечности бетонного основания. При движении грунта, больших климатических и механических нагрузках, фундамент не получит повреждений. Соответственно стенам здания не угрожают деформации, появление трещин и щелей.
Конструктивное исполнение каркаса
В зависимости от типа и сложности фундамента, арматурный каркас может быть выполнен несколькими способами. Соответственно расчеты также отличаются для конструкций плитного, ленточного, свайного и других типов. После выбора подходящей схемы каркаса выполняется подбор необходимых комплектующих. Рассчитывается количество и длина прутьев, объем армирующей сетки. Необходимо определиться со способом соединения стержней между собой, направленностью конструкций, сечением металла и другими характеристиками.
Стандартный каркас собирается из прутков, расположенных в продольном и поперечном направлениях. Шаг ячеи определяется нагрузкой на основание, а для соединения используется технология сварки, вязальная проволока, специальные муфты.
Для ленточных фундаментов каркас представляет собой набор продольных прутков, соединенных между собой поперечными элементами. Такие сетки располагаются в несколько рядов. Для плитной конструкции подойдет плоский каркас из арматуры. Для свайного фундамента металлические прутки монтируются вертикально.
Расчет арматуры для фундамента плитного типа
Использование фундамента плитного типа актуально при возведении жилых домов и коттеджей, в которых не планируется выделение подвального помещения. Визуально основание выполнено в форме монолитной плиты, толщина которой может превышать 0,2 метра. При этом армирующая сетка укладывается в 1, 2 или более рядов, в зависимости от массы здания и типа грунта.
При выборе арматуры в первую очередь оценивается категория грунта. Для непучинистой почвы подойдут ребристые прутки толщиной от 10 мм. Если планируется строительство на слабой почве или участке с наклоном. Минимальный диаметр стержней должен быть 14 мм и более. Связи между сетками выполняются из арматуры на 6 мм. Стандартный шаг сетки составляет 0,2 метра, но данный показатель может меняться в большую или меньшую сторону. Связки продольных и поперечных стержней выполняются проволокой или сваркой.
Технология расчета арматуры предполагает выполнение следующих этапов:
- при толщине фундамента до 0,2 метра желательно использовать 2 плоских каркаса с вертикальной связкой, если основание более габаритное, число сеток увеличивается;
- для расчета количества продольных прутьев длина большей стороны делится на шаг 0,2 метра, что позволяет получить общую длину стержней;
- аналогичным образом рассчитывается общая длина поперечных звеньев каркаса;
- так как диаметр прутка принимается одинаковым, можно быстро вычислить необходимое количество стержней и рассчитать объем приобретаемой арматуры;
- для расчета вертикальных прутков подсчитывает количество точек соединения одной и сеток, размер связей равняется высоте фундаментной подушки, далее нетрудно подсчитать общую протяженность стальных стержней;
- если фиксация прутков выполняется на вязальную проволоку, вычисляется число соединений арматуры, средний расход составляет 0,4 метра на одну точку.
После выбора конструкции фундаментного основания и необходимой толщины арматуры, рассчитать объем приобретаемой продукции можно самостоятельно. Для этого достаточно знать площадь фундамента и его высоту, количество арматурных сеток, шаг ячеи. Все расчеты можно выполнить с помощью обычного калькулятора.
Расчет арматуры для фундамента ленточного типа
Для большинства зданий и сооружений выбор ленточного фундамента является оптимальным вариантом. Такая конструкция качественно выполняет свои функции, а затраты на монтаж существенно ниже, чем расходы на заливку монолитного основания. В состав каркаса входят продольные, поперечные и вертикальные металлические стержни.
Для продольной арматуры стандартным диаметром является 12-16 мм, поперечные и вертикальные связи могут быть меньшей толщины. Шаг ячеи принимается равным 0,2 метра, но может быть изменен в зависимости от конструкции и нагрузки на основание. Технология расчета арматурного каркаса ленточного фундамента будет следующей:
- в конструкцию обязательно закладывается 2 сетки, верхняя связывает основание при просадках грунта, нижняя исключает деформации при вспучивании почвы;
- для обустройства каркаса потребуется 4 продольных прутка, протяженность каждого из которых равняется периметру ленточного фундамента;
- количество поперечных прутков рассчитывается, исходя из принятого шага ячейки, длина стержней равна толщине бетонного основания;
- вертикальная арматура рассчитывается, исходя из количества соединение продольных и поперечных стержней, высота прутков определяется аналогичными показателями фундамента;
- для соединения прутков используется вязальная проволока, длина которой определяется из расчета 0,4 метра на 1 узел.
Путем достаточно простых вычислений удается подсчитать общую длину продольных, поперечных и вертикальных стержней, а также вязальной проволоки. В зависимости от длины имеющейся в продаже арматуры вычисляется число отдельных элементов. При этом учитывается некоторый запас, наличие которого необходимо в непредвиденных случаях.
Арматурные каркасы для фундаментов другого типа рассчитываются аналогичным образом. Для этого необходимо знать размеры каждого блока, определиться с конструкцией, толщиной используемых прутков. С помощью несложных математических расчетов определяется общая длина стержней, расходы на их приобретение.
Монтаж фундамента любого типа будет некачественным, если в основу не заложить металлический каркас. Стальные прутья, сваренные или связанные между собой, защищают фундамент от деформации, выкрашивание, излома и растяжения. Количество и стоимость необходимого материала можно рассчитать самостоятельно. При отсутствии опыта желательно обратиться к профессионалам, предлагающим свои услуги в данной сфере.
Проект железобетонных опор: ACI 318-14 и IS456
Железобетонные опоры спроектированы на основе нагрузок и моментов колонны в основании и данных о грунте. Эта статья пролила свет на конструкцию железобетонного фундамента.
Типы железобетонных фундаментов
Ниже приведены типы фондов в порядке предпочтения с точки зрения экономии:
- Индивидуальные опоры (изолированные опоры)
- Комбинированные опоры (комбинация индивидуальных опор)
- Газа фундаментов с подпорной стенкой выступают в качестве полосы луча, где это применимо.
- Плотные фундаменты типов (а) плита (б) балка-плита.
Можно также спроектировать опоры кирпичной стены. Часто балки цоколя используются для поддержки кирпичных стен, а также для защиты от землетрясений во всех основных направлениях.
Важные соображения при проектировании опор
Фундаменты
— это конструктивные элементы, передающие на землю нагрузки от здания или отдельных колонн.
Если эти нагрузки должны передаваться должным образом, опоры должны быть спроектированы так, чтобы предотвратить чрезмерную оседание или вращение, чтобы минимизировать дифференциальную оседку и обеспечить адекватную защиту от скольжения и опрокидывания.
Глубина основания
Размер постамента
В случае плоских цементно-бетонных оснований угол между плоскостью, проходящей через нижний край постамента и соответствующей кромкой соединения колонны с постаментом, и горизонтальной плоскостью должен определяться выражением.
Где:
q o: расчетное максимальное давление на опору у основания опоры / основания в Н / мм 2
: Характеристическая прочность бетона через 28 суток в Н / мм 2
Рис.1: размер постамента
Рекомендации IS 456: 2000, Расчет по предельным состояниям
Для определения площади фундамента, необходимой для надлежащей передачи общей нагрузки на грунт, учитывается общая нагрузка (комбинация статической нагрузки, временной нагрузки и любой другой нагрузки без умножения ее на какой-либо коэффициент нагрузки).
Максимальный изгибающий момент в опорах
Согласно ACI 318-14 раздел 15.4.1 и 15.4.2, а также IS 456: 2000, пункты 34.2.3.1 и 34.2.3.2. Изгибающий момент будет учитываться на поверхности колонны, пьедестала или стены и должен определяться путем прохождения через сечение вертикальной плоскости, которая полностью простирается. поперек основания и по всей площади основания или одной стороне указанной плоскости.
Рис.2: Максимальный изгибающий момент в основании
Проверка прочности на сдвиг для опор
Прочность фундамента на сдвиг определяется двумя факторами:
- Фундамент, действующий в основном как широкая балка, с потенциальной диагональной трещиной, проходящей в плоскости по всей ширине, критическое сечение для этого условия следует принять как вертикальное сечение, расположенное от лицевой стороны колонны, пьедестала или стены на расстояние, равное эффективной глубине основания при установке на грунт.
Для одностороннего действия на сдвиг номинальное напряжение сдвига рассчитывается как:
Где:
: напряжение сдвига
: факторное вертикальное поперечное усилие
b: ширина критического сечения
d: эффективная глубина
, где: расчетная прочность бетона на сдвиг на основе% продольного армирования на растяжение. См. Таблицу 61 СП-16)
Рис. 3: Критическое сечение для одностороннего сдвига в фундаменте
2.Что касается двухстороннего сдвига (или двухстороннего действия изгиба или продавливания) фундамента, при пробивных ножницах необходимо проверить следующее. Пробивные ножницы должны быть по периметру, в 0,5 раза превышающим эффективную глубину от торца колонны или основания.
Для двухстороннего действия сдвига номинальное напряжение сдвига рассчитывается в соответствии с пунктом 31.6.2 IS456: 2000 следующим образом:
Где
: напряжение сдвига
: периферия критического участка
d: эффективная глубина
: факторное вертикальное поперечное усилие
Если поперечная арматура не предусмотрена, номинальное напряжение сдвига в критическом сечении не должно превышать
Где:
= 0. 5 + Bc (но не больше 1)
Bc: короткий размер колонны или пьедестала / длинный размер колонны или пьедестала
Результат уравнения 6 выражается в Н / мм 2
Примечание : Обычно основание делают достаточно глубоким, чтобы не требовалось усиление сдвига.
Установочная длина стержней арматуры в основании
Согласно ACI 318-14 раздел 15.6 и IS 456: 2000 пункт 34.2.4.3, критический участок для проверки длины развертки в основании должен приниматься в следующих плоскостях:
- На лицевой стороне колонны, пьедестала или стены, для опор бетонной колонны, пьедестала или стены.
- На полпути между центральной линией и краем стены, для опор под каменными стенами.
- На полпути между лицевой стороной колонны или пьедестала и краем основания с косынками для опор под основаниями с косынками.
- Все остальные вертикальные плоскости, в которых происходят резкие изменения сечения.
Арматура опор
Минимальное армирование в плите фундамента, указанное в коде, составляет 0,12%, а максимальное указанное расстояние — 3-кратная эффективная глубина или 450 мм, в зависимости от того, что меньше.(пункт 34.3).
На односторонней усиленной опоре; двухсторонний усиленный квадратный фундамент; и в длинном направлении двухсторонней прямоугольной опоры, усиление, идущее в каждом направлении, должно быть равномерно распределено по всей ширине опоры.
Однако должна быть центральная полоса, равная ширине опоры для коротких двухсторонних прямоугольных опор. Армирование в центральной полосе должно быть обеспечено в соответствии со следующим уравнением.
Где B — отношение длинной стороны подошвы к ее короткой стороне.
Передача нагрузки в основании стойки
Согласно IS 456: 2000, пункт: 34.4, силы и моменты у основания колонны, стен или усиленного постамента должны передаваться посредством опоры на верхнюю часть поддерживающего постамента или опоры.
Давление в подшипнике на нагруженную поверхность не должно превышать допустимое напряжение в подшипнике при прямом сжатии, умноженное на значение, равное
, но не более 2.
Где:
: опоры для опоры на опору, которая является наклонной или ступенчатой, опора может быть принята как площадь нижнего основания самой большой усеченной пирамиды или конуса, полностью заключенная в опору и имеющая верхнее основание, фактически нагруженная площадь и имеющий боковой наклон от одной вертикали до двух горизонталей.
: нагруженная зона у основания колонны.
Для расчета по предельному состоянию заданное допустимое напряжение подшипника составляет 45 f ck .
Если допустимое несущее напряжение превышено либо в бетоне колонны, либо в бетоне фундамента, необходимо предусмотреть арматуру для развития избыточного усилия.Армирование может быть предусмотрено либо путем продления продольных стержней в основании, либо путем установки дюбелей в соответствии с правилами, указанными ниже:
- Минимальная площадь выдвинутых продольных стержней или дюбелей должна составлять 0,5% площади поперечного сечения поддерживаемой колонны или пьедестала.
- Должно быть предусмотрено минимум четыре стержня.
- Если используются дюбели, их диаметр не должен превышать диаметр стержней колонны более чем на 3 мм.
- Должна быть обеспечена достаточная длина проявки для передачи сжатия или растяжения на опорный элемент.
- Стержни колонн диаметром более 36 мм, только при сжатии, могут быть закреплены на основании стержнями меньшего диаметра. Дюбель должен входить в колонну на расстояние, равное длине развертки стержня колонны. При этом дюбели должны входить вертикально в фундамент на расстояние, равное развернутой длине дюбеля.
Рис.4: разные типы фундаментов с деталями армирования
ФУНДАМЕНТЫ И ФУНДАМЕНТЫ
Бетонные опоры
Опоры являются важной частью строительства фундамента.Обычно они сделаны из бетона с арматурой, залитой в вырытую траншею. Назначение опор — поддерживать фундамент и предотвращать оседание. Опоры особенно важны на участках с проблемными почвами.
Строительство опор лучше всего доверить профессионалам, которые смогут оценить почвенные условия и принять решение о правильной глубине и ширине опор, а также о правильном размещении. Размеры опор также зависят от размера и типа возводимой конструкции.Размещение опор имеет решающее значение для обеспечения надлежащей поддержки фундамента и, в конечном итоге, конструкции.
Бетонные фундаменты
Т-образный
Традиционный метод фундамента для поддержки конструкции в зоне промерзания грунта. Ниже линии промерзания кладут фундамент, а затем добавляют стены. Основание шире стены, что обеспечивает дополнительную поддержку у основания фундамента.Укладывают Т-образный фундамент и дают ему застыть; во-вторых, возводятся стены; и наконец, между стенами заливается плита.
Итого:
Т-образные фундаменты используются в местах промерзания грунта.
Сначала кладется фундамент.
Во-вторых, стены построены и залиты.
Наконец, кладется плита.
Монолитный фундамент
Как следует из названия, плита представляет собой один слой бетона толщиной несколько дюймов.Плита заливается по краям толще, чтобы получилось цельное основание; арматурные стержни укрепляют утолщенный край. Плита обычно опирается на слой измельченного гравия для улучшения дренажа. Заливка металлической сетки в бетон снижает вероятность появления трещин. Плита на уклоне подходит для мест, где земля не замерзает, но ее также можно дополнить изоляцией, чтобы предотвратить воздействие морозного пучка. (см. ниже)
Итого:
Плита на уклоне, используемая в местах, где земля не замерзает.
Кромки плиты перекрытия толще, чем внутренняя часть плиты.
Монолитная плита монолитная (залита все за один раз).
Защита от мороза
Этот метод работает только с обогреваемой конструкцией. Он основан на использовании двух листов жесткой полистирольной изоляции — один на внешней стороне фундаментной стены, а другой, уложенный на гравийной подушке у основания стены, — чтобы предотвратить замерзание, что является проблемой для плит. на фундаментах в местах с морозами.Изоляция удерживает тепло от конструкции в земле под подошвами и предотвращает потерю тепла с края плиты. Это тепло поддерживает температуру земли вокруг опор выше нуля.
Итого:
Работает только с обогреваемой конструкцией.
Имеет преимущества монолитного метода перекрытия (бетонная заливка монолитно) в зонах, подверженных морозам.
Бетон заливается за одну операцию, тогда как для Т-образного фундамента требуется 3 заливки.
Винтовой пирс
Винтовая опора — это стальной вал со спиралями, похожий на большой винт, который служит опорой фундамента для различных типов конструкций. Вал обычно квадратный и изготавливается из 5-футовых секций. Винтовые опоры часто используются, когда сложные грунтовые условия не позволяют использовать традиционную систему фундаментов. Они также обычно используются для исправления и поддержки существующих фундаментов, которые устояли или рухнули.
Основная функция винтовых опор заключается в поддержке и стабилизации несущих стен конструкции за счет переноса веса конструкции с более слабых грунтов на опоры.Одним из ключевых преимуществ винтовых опор является то, что они могут надолго поднять затонувший фундамент до исходного уровня.
4 метода укрепления фундамента существующего дома
- 26 августа 2019
- Блог
- Legal Eagle Contractors
Основание дома — это не то, о чем многие владельцы недвижимости задумываются, пока не возникнет проблема. Однако есть веские причины подумать об инвестировании в укрепление фундамента задолго до того, как это произойдет. Наводнения, сила ветра и общая эрозия почвы со временем могут стать ключевыми проблемами для владельцев недвижимости. К счастью, для большинства ситуаций существуют решения, позволяющие предотвратить катастрофические сбои.
Фото: Visitor7.
Почему следует укреплять фундамент?
Фундамент дома — это то, на чем держится все остальное. Это должно быть прочное основание, которое выдержит все.Тем не менее, изменения в почве под ним (например, вызванные наводнением) или веса над ним (например, из-за добавления сюжета) могут вызвать сдвиги в фундаменте. Иногда сам фундамент не может справиться с этими сдвигами, и происходят разрывы.
В Хьюстоне нам приходится иметь дело с богатой глиной почвой gumbo, чувствительной к изменениям содержания воды. Когда почва намокает, она расширяется вверх, оказывая давление на бетонную плиту выше. Когда почва высыхает, почва сжимается, оставляя бетонное основание без опоры.
Когда случаются смены и перерывы, это может поставить под угрозу целостность всего дома. Это никогда не бывает хорошо, и это дорогостоящий ремонт.
Хорошая новость для владельцев недвижимости заключается в том, что большинство существующих конструкций можно укрепить. Это можно сделать разными способами. Однако лучше, чтобы инженер-строитель или подрядчик по жилью предоставили конкретные рекомендации для вашего дома. Суть в том, что если у вашего фундамента есть проблемы, их часто можно исправить.
Признаки повреждения фундамента, требующего ремонта
В некоторых случаях может быть проблемой увидеть давление и силу, под которыми находится фундамент.Большинство людей никогда не задумывается об изменениях, которые они вносят в структуру, таких как добавление новых стен, изменение планировки, добавление комнат или управление накоплением влаги. Тем не менее, как правило, есть явные признаки того, что фундамент требует ремонта. Вот некоторые из них.
Трещины в фундаменте
Пожалуй, наиболее частым признаком повреждения фундамента является развитие трещин. Видимые трещины обычно появляются после скрытых, что означает, что проблема, вероятно, более обширна, чем кажется.Если есть крошение наружных стен, это ключевая проблема. Внутри дома в подвале могут быть признаки трещин и видимых повреждений. Это все проблемы.
Деформированные потолки и стены
Стены внутри дома могут дать больше информации о том, что происходит под ним. Если есть перекос, например, стены или потолок не ровные и плоские, это может указывать на перемещение дома. Его также можно найти, заглянув в углы комнат дома.Они могут больше не совпадать. Если углы, молдинг, стыки и потолок больше не находятся на одном уровне, это может быть проблемой.
урон водой
Часто повреждения фундамента происходят из-за воды. Если вода не будет должным образом стекать из конструкции, это может привести к повреждению фундамента. Бетонный фундамент может выдержать только такое количество влаги, прежде чем он начнет крошиться.
Знаки конструкции
Также необходимо учитывать несколько других структурных признаков.Наклонные лестницы, окна, которые больше не квадратные, полы, которые больше не выровнены, и двери, которые не выровнены должным образом, также являются знаками. Вы можете заметить это, когда предметы катятся по полу в одном направлении или двери не закрываются плотно.
Как можно укрепить фундамент?
Если у вас есть эти признаки, возможно, пришло время рассмотреть ряд решений, которые могут помочь их исправить. Правильный метод для вашей жилой конструкции зависит от специфики вашей ситуации.Вот несколько часто используемых методов.
1. Опора
Этот метод используется либо для увеличения глубины фундамента, либо для ремонта фундамента, если он имеет значительные повреждения. Если в здании есть трещины, особенно те, которые шире than дюйма и видны, это может быть правильным методом. Доступно несколько типов подкрепления.
Mass Pour : этот метод используется чаще всего. Фундамент выкапывается частями ниже основания.В каждую открытую яму кладут бетон. Это повторяется до тех пор, пока область не будет полностью закреплена.
Винтовые сваи и кронштейны : Вторая форма опоры включает использование винтовых свай и кронштейнов, что может быть выполнено вручную или с помощью небольшого экскаватора. Это более быстрый вариант с уменьшенным количеством вибраций, которые могут вызвать повреждение других участков собственности.
Сваи и балки : Этот метод подкрепления включает установку мини-свай по обе стороны от стены, на которую нанесен удар.Затем убирается вся кирпичная кладка под стеной, после чего на этом участке укладывается железобетон. Это полезно в ситуациях, когда доступ ограничен или при большой нагрузке.
Свайный плот : этот метод используется, когда все здание необходимо укрепить, что не так часто. Если фундамент слишком глубокий для других методов или если почва слишком твердая, можно использовать этот метод. Здесь сваи располагаются в разных местах, а потом под основанием выламываются карманы.Затем в процессе укладываются усиленные игольчатые балки, которые выдерживают вес стены.
2. Обшивка фундаментов
Еще один метод, о котором вы, возможно, слышали, — это покрытие фундамента. Этот метод используется, когда есть колонны, требующие усиления. Это обычная необходимость при добавлении дополнительной нагрузки к стене, например, за счет расширения. Чтобы стена была достаточно прочной, чтобы выдержать это, может потребоваться расширить или добавить прочности уже имеющемуся фундаменту.Для этого команда строит бетонную оболочку, которая добавляется к существующим опорам здания.
3. Муджэкинг
Mudjacking не совсем использует грязь, но это метод улучшения фундамента для небольших пространств. Его часто используют для ступеней, небольших бетонных поверхностей и подъездов. Цемент и другие материалы вводятся в небольшие отверстия, проделанные в бетоне. Материал расширяется, что помогает поднять плиту, которая больше не выровнена.
4. Подъем и выравнивание дома
Чтобы избежать повреждений от наводнения, может потребоваться подъем в доме. Это никогда не бывает простым процессом, но для его подъема может потребоваться использование гидравлического домкрата, который помещается под домом. Этот процесс, который иногда называют обшивкой здания, снимает реальную структуру здания с самого фундамента и поднимает его с помощью винтовых домкратов. Это может помочь, когда необходимо переместить конструкцию или улучшить фундамент под ней.
Во всех ситуациях подрядчики должны учитывать такие вещи, как состояние бетонной плиты и остальной части дома. Им также необходимо учитывать фактический уровень повреждений и тип почвы вокруг него. Индивидуальный план почти всегда лучше.
Дополнительные преимущества фундаментных работ по укреплению дома
Несомненно, главное преимущество укрепления фундамента здания — сделать его более безопасным. Однако есть и другие преимущества. В некоторых ситуациях это помогает гарантировать, что недвижимость останется ценной и ее можно будет продать.Без ремонта может быть сложно найти покупателя. Более того, фундамент со значительным повреждением также может затруднить страхование дома.
Ремонт фундамента жилого дома — это не то, что нужно. Если вы считаете, что ваша структура вызывает опасения, обратитесь к инженеру или подрядчику, чтобы определить, какие решения лучше всего подходят для ваших нужд.
Legal Eagle Contractors — отмеченная наградами строительная и реконструирующая компания, работающая в Хьюстоне с 1978 года.
DOE Building Foundations Section 4-1
Рисунок 4-1.Монолитный фундамент с наружной изоляцией
4.1 Рекомендуемые детали конструкции и конструкции
КОНСТРУКЦИЯ
Основными конструктивными компонентами фундаментной плиты перекрытия являются сама плита перекрытия и либо профилированные балки, либо фундаментные стены с опорами по периметру плиты (см. Рисунки 4-2 и 4-3). В некоторых случаях необходимы дополнительные опоры (часто утолщенная плита) под несущими стенами или колоннами в центре плиты.Бетонные перекрытия на грунте, как правило, проектируются так, чтобы иметь достаточную прочность, чтобы выдерживать нагрузки на пол без армирования при заливке на ненарушенный или уплотненный грунт. Правильное использование сварной проволочной сетки и бетона с низким водоцементным соотношением может уменьшить растрескивание при усадке, что является важной проблемой для внешнего вида, а также может помочь в стратегиях контроля инфильтрации радона.
Фундаментные стены обычно строятся из монолитного бетона или бетонных блоков. Фундаментные стены должны быть спроектированы таким образом, чтобы выдерживать вертикальные нагрузки от вышележащей конструкции и передавать эти нагрузки на фундамент.Бетонные опоры должны обеспечивать опору под фундаментные стены и колонны. Точно так же опорные балки на краю фундамента поддерживают надстройку выше. Опоры должны иметь размер, достаточный для распределения нагрузки на почву. Замерзшая вода под опорами может вздыбиться, вызвать растрескивание и другие структурные проблемы. По этой причине опоры должны располагаться ниже максимальной глубины промерзания, если только они не основаны на коренных породах или не чувствительных к заморозках почвах или изолированы для предотвращения промерзания.
При наличии обширных грунтов или в районах с высокой сейсмической активностью могут потребоваться специальные методы строительства фундамента. В этих случаях рекомендуется проконсультироваться с местными строительными чиновниками и инженером-строителем.
УПРАВЛЕНИЕ ВОДОЙ / ВЛАЖНОСТЬЮ
В общем, схемы управления влажностью должны контролировать воду в двух состояниях. Во-первых, поскольку почва, контактирующая с фундаментом и плитой перекрытия, всегда имеет относительную влажность 100%, фундамент должен иметь дело с водяным паром, который будет иметь тенденцию мигрировать внутрь в большинстве условий. Во-вторых, жидкая вода не должна скапливаться вокруг фундамента и под ним. Жидкая вода поступает из таких источников, как:
- Неконтролируемые потоки поверхностных вод
- Высокий уровень воды
- Капиллярный поток через конструкции подземного фундамента
Рисунок 4-2. Компоненты конструктивной системы фундаментного перекрытия с профильной балкой
Рисунок 4-3. Методы дренажа фундаментных перекрытий
Методы контроля накопления и движения влаги в фундаменте являются важным компонентом всей конструкции.Неправильное управление влажностью может привести к структурным повреждениям, повреждению отделки пола и росту плесени, ремонт которых может быть очень дорогостоящим и опасным для здоровья.
Следующие методы строительства предотвратят создание проблем из-за избытка воды в виде жидкой воды и пара. Это достигается за счет использования соответствующего дренажа и использования замедлителей образования пара. Эти руководящие принципы и рекомендации применимы к утолщенным краевым / монолитным плитам и фундаментам стеновых стволов с независимыми конфигурациями перекрытий над уровнем земли (PATH 2006).Эти две конфигурации плиты на уровне грунта показаны на рисунках 4-2 и 4-3.
- Управляйте внешней почвой и дождевой водой, используя водосточные желоба и водосточные трубы, а также выравнивая поверхность по периметру с падением не менее шести дюймов на десять футов бега.
- Замедлитель образования пара, такой как полиэтиленовый лист толщиной 6 мил, следует размещать непосредственно под бетонной плитой (DOE 2009). Замедлитель пара предотвратит проникновение влаги из земли через плиту в здание.Рекомендуется, чтобы замедлитель образования пара находился в непосредственном контакте с бетонной плитой и не помещал между ними песок или гравий (Lstiburek 2008).
- Слой для разрыва капилляров, состоящий из трех-четырех дюймов чистого гравия (без мелких частиц), должен быть установлен под замедлителем образования пара.
Этот слой помогает еще больше предотвратить просачивание основной массы почвы на плиту и позволяет отводить эту влагу, если установлена дренажная система (PATH 2006). Этот слой также служит расширителем поля давления для системы вентиляции почвенного газа, если таковая имеется.
- Добавьте капиллярный разрыв (герметик для поролона с закрытыми порами или прокладка) между верхней частью бетона и пластиной порога, чтобы предотвратить миграцию влаги между бетонным фундаментом и конструкцией стены выше. Для конструкций с балками со встроенным грунтом выдвиньте замедлитель образования пара под плиту под основание, доведя его до уровня грунта.
- Существует несколько различных вариантов отделки пола, которые можно использовать на фундаменте из плит, однако следует избегать использования непроницаемых материалов, таких как виниловые полы, поскольку они предотвращают высыхание влаги из плит во внутреннюю часть дома.Влагостойкие покрытия, такие как пятна от плитки, терраццо и бетона, особенно рекомендуются для влажного климата.
Также можно использовать такие чувствительные к влаге покрытия, как ковролин и деревянные полы. Однако, чтобы их можно было использовать надлежащим образом, следует использовать изоляцию суб-плиты, поверхности плиты или периметра плиты для регулирования температуры плиты. Низкие температуры могут вызвать конденсацию на плите, что приведет к повреждению отделки, а также к росту плесени.
- После того, как бетон для плиты был залит, он все еще будет содержать большое количество влаги, и ему необходимо дать возможность застыть.Рекомендуется использовать бетон с низким содержанием воды, чтобы уменьшить количество оставшейся влаги, которая должна высохнуть после схватывания плиты. Чтобы предотвратить растрескивание и коробление во время процесса отверждения, следует использовать методы отверждения во влажной среде в сочетании с армированием сварной проволочной сеткой. Для предотвращения растрескивания также следует использовать горизонтальную непрерывную арматуру № 5 в верхней и нижней части стенки ствола или утолщенный край плиты (PATH 2006).
Перед установкой отделки плите необходимо дать ей достаточно высохнуть (Lstiburek 2008).
ДРЕНАЖ И ГИДРОИЗОЛЯЦИЯ
Так как фундамент из плит не закрывает пространство ниже уровня земли, традиционная гидроизоляция часто не требуется. Однако между землей и внутренней / надземной частью здания необходим непрерывный слой материалов, замедляющих образование капилляров / паров. В зависимости от конструкции фундамента это могут быть субплитные замедлители образования пара, уплотнители порогов, прокладки, гидроизоляционные мембраны или другие подходящие материалы.
Дождевую воду можно правильно контролировать, используя хорошо спроектированную систему водостока и водосточной трубы, а также выравнивая грунт вокруг фундамента (6 дюймов на 10 футов), чтобы отвести воду от фундамента (Lstiburek 2006). Плиту также следует поднять как минимум на восемь дюймов над уровнем земли, чтобы предотвратить скопление воды в основании (PATH 2006).
Поскольку фундамент из плит размещает все жилое пространство над уровнем земли, дренаж земляного полотна не всегда необходим. В некоторых случаях, когда может происходить сезонное скопление поверхностных вод или на участках с непроницаемыми грунтами, рекомендуется установить дренаж в фундамент непосредственно рядом с основанием фундамента, как это рекомендуется для подвалов и подвалов.Сборка дренажа фундамента включает в себя фильтровальную ткань, гравий и перфорированную пластиковую дренажную трубу, обычно диаметром 4 дюйма. Дренаж выходит на дневной свет или в герметичный поддон ..
Рисунок 4-4. Возможные места установки плиты на изоляционном материале класса
РАСПОЛОЖЕНИЕ ИЗОЛЯЦИИ
Изоляция включается в монолитное строительство для двух целей:
- Изоляция предотвращает потерю тепла зимой и приток тепла летом. Этот эффект наиболее выражен по периметру плиты, где в противном случае край плиты напрямую контактирует с наружным воздухом.
- Даже в климатических условиях и местах на плите (периметр или середина), где изоляция плиты может не дать больших энергетических преимуществ, тепловая изоляция плиты может предотвратить низкие температуры плиты, которые в противном случае могут вызвать конденсацию внутри дома.
Это может привести к появлению плесени и другим проблемам, связанным с влажностью, особенно если плита покрыта ковром.
Для изоляции фундаментной плиты перекрытия можно использовать самые разные методы (рисунки 4-4 и 4-5). Хорошая строительная практика требует поднять плиту над уровнем земли не менее чем на 8 дюймов, чтобы изолировать деревянный каркас от брызг дождя, сырости почвы и термитов, а также удерживать дренажный слой под плитами над окружающей землей.Наиболее интенсивная теплопередача происходит через эту небольшую площадь фундаментной стены над уровнем земли, поэтому при ее детализации и установке требуется особая осторожность. Тепло также передается между плитой и почвой, через которую оно перемещается к внешней поверхности земли и воздуху. Теплоотдача с почвой максимальна на краю и быстро уменьшается по мере удаления от нее. В жарком климате прямое соединение почвы с плитой может уменьшить охлаждающую нагрузку, хотя и с риском конденсации влаги из воздуха в помещении.
Оба компонента теплопередачи плиты — по краю и через почву — должны быть учтены при проектировании системы изоляции. Утеплитель можно разместить вертикально за пределами фундаментной стены или горизонтальной балки. Такой подход эффективно изолирует открытый край плиты над уровнем земли и расширяется вниз, чтобы уменьшить тепловой поток от плиты перекрытия к поверхности земли за пределами здания. Вертикальная внешняя изоляция (рис. 4-5а) — единственный метод снижения теплопотерь на краю балки и перекрытия фундамента.Для фундаментов стволовых стен основным преимуществом внешней изоляции является то, что внутренний стык между плитой и фундаментом может не нуждаться в теплоизоляции, что упрощает строительство. Один из недостатков заключается в том, что жесткая изоляция должна быть покрыта защитным слоем, покрытием или гидроизоляционным материалом. Еще одно ограничение заключается в том, что глубина внешней изоляции регулируется глубиной основания. Однако можно обеспечить дополнительную внешнюю изоляцию, отводя изоляцию горизонтально от фундаментной стены. Поскольку этот подход позволяет контролировать промерзание у основания, его можно использовать для уменьшения требований к глубине основания при определенных обстоятельствах (рисунок 4-5a). Этот метод известен как «неглубокий фундамент с защитой от замерзания» (FPSF). Вариант для неотапливаемых зданий показан на Рисунке 4-5b. См. NAHB (2004) для получения дополнительной информации об этом методе, который может существенно снизить начальную стоимость строительства фундамента.
Наружная изоляция должна быть одобрена для использования в условиях ниже допустимой.Как правило, используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна. (Baechler et al. 2005). Экструдированный полистирол (номинальное R-5 на дюйм) является обычным выбором. Пенополистирол (номинальное R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%.Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики по истечении пятнадцатилетнего периода исследования. Это потенциальное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).
Рисунок 4-5. Возможные места установки плиты на изоляционном материале класса
Изоляция также может быть размещена вертикально на внутренней стороне ствола или горизонтально под плитой.В обоих случаях уменьшаются потери тепла с пола и устраняются трудности с размещением и защитой внешней изоляции. Внутренняя вертикальная изоляция ограничена глубиной фундамента, но изоляция под плиткой в этом отношении не ограничивается. Обычно утепляются внешние 2–4 фута периметра плиты, но при желании можно утеплить весь пол. Помните, что контроль конденсации является важным фактором наряду с использованием тепловой энергии. Важно изолировать стык между плитой и фундаментной стеной всякий раз, когда изоляция размещается внутри фундаментной стены или под плитой.В противном случае через тепловой мост на краю плиты происходит значительная теплопередача. В этот момент толщина изоляции обычно не превышает 1 дюйм. На рис. 4-4d показана изоляция под плитой и на краю плиты для контроля температуры плиты, при этом внешняя изоляция размещена вертикально и горизонтально, чтобы предотвратить проникновение промерзания в основание.
Другой вариант теплоизоляции фундаментной плиты — это размещение изоляции над плитой перекрытия (Рисунок 4-5c).Это может быть единственный вариант для модернизации приложений. Он также может быть уместен для нового строительства, особенно когда желаемой отделкой пола является дерево. Эти методы имеют важные детали, которым необходимо следовать, чтобы избежать проблем с влажностью; полное описание можно найти в Lstiburek (2006).
Другие специальные системы могут быть использованы для стволовых стенок плиты на уровне грунта. К ним относятся изолированные бетонные формы (ICF), плиты с последующим натяжением и системы, которые помещают пенопласт между двумя слоями монолитного бетона.
Рисунок 4-6. Методы борьбы с термитами в грунте
МЕТОДЫ КОНТРОЛЯ ТЕРМИТА И ДРЕВЕСИНЫ
Методы контроля проникновения термитов через жилые фонды необходимы на большей части территории Соединенных Штатов (см. Рис. 4-6). Для получения дополнительной информации проконсультируйтесь с местными строительными органами и правилами.
- Сведите к минимуму влажность почвы вокруг фундамента с помощью поверхностного дренажа и использования желобов, водостоков и водостоков для удаления воды с крыши.
- Удалите с участка все корни, пни и древесину. Деревянные колья и опалубку также следует удалить из зоны фундамента.
- Обработайте почву термитицидом на всех участках, уязвимых для термитов (Labs et al.
1988).
- Поместите соединительную балку или ряд сплошных заглушек поверх всех бетонных стен фундамента, чтобы убедиться, что не осталось открытых стержней. Как вариант, заполните все сердцевины на верхнем слое строительным раствором. Стык раствора под верхним слоем или связующей балкой должен быть усилен для дополнительной защиты.
- Поместите порог на высоте не менее 8 дюймов над уровнем земли; это должно быть обработано консервантом давления, чтобы сопротивляться гниению. Поскольку термитные щиты часто повреждаются или устанавливаются недостаточно тщательно, они считаются необязательными и сами по себе не могут считаться достаточной защитой.
- Убедитесь, что внешний деревянный сайдинг и отделка находятся на высоте не менее 6 дюймов над уровнем земли.
- Конструируйте подъезды и внешние плиты так, чтобы они отклонялись от стены фундамента, были усилены стальной или проволочной сеткой, обычно находились не менее чем на 2 дюйма ниже внешнего сайдинга и были отделены от всех деревянных элементов зазором в 2 дюйма, видимым для осмотра.
либо сплошной металлический оклад, пропаянный по всем швам.
- Заполните стык между монолитным полом и фундаментной стеной жидким уретановым герметиком или каменноугольной смолой, чтобы сформировать барьер от термитов и радона.
Пенопласт и изоляционные материалы из минеральной ваты не имеют пищевой ценности для термитов, но они могут обеспечить защитное покрытие и облегчить проходку туннелей. Изоляционные установки могут быть детализированы для облегчения осмотра, хотя часто за счет снижения тепловой эффективности.
В принципе, щитки от термитов обеспечивают защиту, но на них не следует полагаться как на барьер.Термитные щиты показаны в этом документе как компонент всех конструкций плиты на уровне грунта. Их цель — вытеснить любых насекомых, пролезающих через стену, наружу, где их можно будет увидеть. По этой причине щитки от термитов должны быть сплошными, а все швы должны быть герметизированы, чтобы не допустить обхода насекомыми.
Эти опасения по поводу изоляции и ненадежности защиты от термитов привели к выводу, что обработка почвы является наиболее эффективным методом борьбы с термитами с помощью изолированного фундамента. Однако ограничения на широко применяемые термитициды могут сделать этот вариант недоступным или вызвать замену более дорогими и, возможно, менее эффективными продуктами. Эта ситуация должна стимулировать использование методов изоляции, улучшающих визуальный осмотр и обеспечивающих эффективные барьеры для термитов. Для получения дополнительной информации о методах борьбы с термитами см. NAHB (2006).
Рисунок 4-7. Методы контроля содержания радона в плите
МЕТОДЫ УПРАВЛЕНИЯ РАДОНОМ
Уплотнение плиты
Следующие методы минимизации инфильтрации радона через фундамент плиты на уровне являются подходящими, особенно в областях с умеренным или высоким потенциалом радона (зоны 1 и 2), как определено Агентством по охране окружающей среды (см. Рисунки 4-7 и 4-8).Чтобы определить это, свяжитесь с государственным радоновым персоналом.
- Используйте сплошные трубы для дренажа в полу для дневного света или обеспечьте механические ловушки, если они выходят в подземные стоки.
- Положите полиэтиленовую пленку толщиной 6 мил поверх дренажного слоя гравия под плитой. Эта пленка служит одновременно и радоном, и замедлителем влажности. Надрежьте «x» на полиэтиленовой мембране в местах проникновения. Поднимите язычки и заклейте их до места проникновения герметиком или лентой. Следует соблюдать осторожность, чтобы случайно не пробить барьер; рассмотрите возможность использования руслового гравия, если он доступен по разумной цене.Круглый русловой гравий обеспечивает более свободное движение почвенного газа и не имеет острых краев, которые могли бы проникнуть в полиэтилен. Края должны быть притерты не менее 12 дюймов. Полиэтилен должен выходить за верхнюю часть фундаментной стены или под монолитную балку перекрытия или террасу, заканчиваясь не ниже готовой отметки. Используйте бетон с низким соотношением вода / цемент, чтобы минимизировать растрескивание.
- Обеспечьте изоляционное соединение между фундаментной стеной и перекрытием перекрытия, где ожидается вертикальное перемещение.
После того, как плита застынет в течение нескольких дней, закройте шов, залив полиуретаном или аналогичным герметиком в канал размером 1/2 дюйма, образованный съемной полосой. Полиуретановые герметики хорошо прилегают к кирпичной кладке и долговечны. Они не прилипают к полиэтилену. Не используйте латексный герметик.
- Установите сварную проволоку в плиту, чтобы уменьшить влияние усадочного растрескивания. Рассмотрите возможность контрольных швов или дополнительной арматуры возле внутреннего угла L-образных плит. Две части арматурного стержня № 4, длиной 3 фута и с 12-дюймовым центром на участках, где ожидается дополнительное напряжение, должны уменьшить растрескивание.Использование волокон в бетоне также уменьшит количество трещин при пластической усадке.
- Контрольные соединения должны иметь углубление на 1/2 дюйма. Полностью заполните это углубление полиуретановым или аналогичным герметиком.
- Сведите к минимуму количество заливок, чтобы избежать холодных стыков.
Начните отверждение бетона сразу после заливки в соответствии с рекомендациями Американского института бетона (1980; 1983). При 70F требуется не менее трех дней, а при более низких температурах — больше.Используйте непроницаемый покровный лист или влажную мешковину.
- Создайте зазор шириной не менее 1/2 дюйма вокруг всех вводов водопровода и инженерных сетей через плиту на глубину не менее 1/2 дюйма. Заполните полиуретаном или аналогичным герметиком.
- Разместите отводы конденсата HVAC таким образом, чтобы они выходили на дневной свет за пределы ограждающей конструкции здания, или к сливу в полу, надлежащим образом загерметизированным от проникновения радона. Отводы конденсата, которые соединяются с сухими колодцами или другой почвой, могут стать прямыми проводниками почвенного газа и могут быть основным источником поступления радона.
- Поместите слой из твердых блоков, связующую балку или верхний блок поверх всех каменных стен фундамента, чтобы заделать ядра, или заполните открытые ядра блоков в верхнем ряду бетоном.
Альтернативный подход состоит в том, чтобы оставить сердцевины кладки открытыми и заполнить их твердым телом во время заливки плиты перекрытия путем заливки бетона в верхний ряд блока.
- Не размещайте воздуховоды HVAC под плитой.
Рисунок 4-8. Методы сбора и сброса почвенного газа
Улавливание почвенного газа
Наиболее эффективным способом ограничения поступления радона и других газов в почву является использование активной разгерметизации почвы (ASD).ASD работает за счет снижения давления воздуха в почве по сравнению с внутренним. Избегать проемов фундамента в почву или герметизировать эти проемы, а также ограничивать источники разгерметизации помещений вспомогательными системами ASD. Иногда используется система пассивной разгерметизации грунта (PSD, без вентилятора). Если тестирование на радон после заселения показывает, что желательно дальнейшее снижение содержания радона, в вентиляционную трубу можно установить вентилятор (см. Рисунок 4-8).
Снижение давления с помощью поддона оказалось эффективным методом снижения концентрации радона до приемлемых уровней даже в домах с чрезвычайно высокими концентрациями (Dudney 1988).Этот метод снижает давление вокруг оболочки фундамента, в результате чего почвенный газ направляется в систему сбора, избегая внутренних пространств и выводя его наружу.
В фундаменте с хорошим подземным дренажем уже есть система сбора. Дренажный слой из гравия под плитами можно использовать для сбора почвенного газа. Он должен быть не менее 4 дюймов в толщину и из чистого заполнителя не менее 1/2 дюйма в диаметре. Гравий должен быть покрыт полиэтиленовым радоном толщиной 6 мил и замедлителем парообразования.
Вентиляционная труба из ПВХ диаметром 3 или 4 дюйма должна быть проложена от субплитного слоя гравия через кондиционированную часть здания и через самую высокую плоскость крыши. Труба должна заканчиваться под плитой тройником. Чтобы предотвратить засорение трубы гравием, к ножкам тройника можно прикрепить отрезки перфорированного дренажа длиной десять футов и загерметизировать его концы. В качестве альтернативы вентиляционная труба может быть подключена к дренажной системе по периметру, если эта система не подключена к внешней среде.Горизонтальные вентиляционные трубы могут соединять вентиляционную трубу через стены ниже уровня земли с проницаемыми участками под соседними плитами. Одной вентиляционной трубы достаточно для большинства домов с площадью плиты менее 2500 квадратных футов, которая также включает проницаемый подслой. Вентиляционная труба выводится на крышу через желоба, внутренние стены или туалеты.
Система PSD требует, чтобы плита перекрытия была почти воздухонепроницаемой, чтобы усилия по сбору не прерывались коротким замыканием из-за втягивания избыточного комнатного воздуха вниз через плиту в систему.Трещины, проникновения в плиты и контрольные швы должны быть заделаны. Следует избегать сточных вод в полу, которые выходят на гравий под плитой, но при их использовании следует оборудовать механическую ловушку, способную обеспечить герметичное уплотнение.
В то время как правильно установленная система пассивной разгерметизации почвы (PSD) может снизить концентрацию радона внутри помещений примерно на 50%, системы активной разгерметизации почвы (ASD) могут снизить концентрацию радона внутри помещений на 99%. Система PSD более ограничена с точки зрения вариантов прокладки вентиляционных труб и менее прощает дефекты конструкции, чем системы ASD.Кроме того, в новом строительстве можно использовать небольшие вентиляторы ASD (25-40 Вт) с минимальным энергетическим воздействием. В активных системах используются бесшумные прямые канальные вентиляторы для забора газа из почвы. Вентилятор должен располагаться снаружи, а в идеале над кондиционируемым пространством, чтобы любые утечки воздуха со стороны положительного давления вентилятора или вентиляционной трубы не попадали в жилое пространство. Вентилятор должен быть ориентирован таким образом, чтобы в корпусе вентилятора не скапливался конденсат. Стек ASD должен быть проложен через здание, пристроенный гараж или навес и выступать на двенадцать дюймов над крышей. Его также можно провести через ленточную балку и вверх по внешней стороне стены до точки, достаточно высокой, чтобы не было опасности перенаправления выхлопных газов в здание через вентиляционные отверстия чердака или другие проходы. Поскольку системы PSD полагаются на естественную плавучесть для работы, стек PSD должен быть направлен через кондиционированную часть дома.
Вентилятор, способный поддерживать всасывание воды на 0,2 дюйма в условиях установки, подходит для обслуживания подсобных систем сбора в большинстве домов (Labs 1988).Это часто достигается с помощью центробежного вентилятора мощностью 0,03 л.с. (25 Вт), 160 куб. Футов в минуту (максимальная мощность), способного всасывать до 1 дюйма воды перед остановкой. В полевых условиях на глубине 0,2 дюйма воды такой вентилятор работает со скоростью около 80 кубических футов в минуту.
Можно проверить всасывание подсистемы, просверлив небольшое (1/4 дюйма) отверстие в участках плиты, удаленных от точки всасывания, и измерив всасывание через отверстие с помощью микроманометра или наклонного манометра. Целью подсистемы сброса давления внутри плиты является создание отрицательного давления воздуха под плитой относительно давления воздуха в прилегающем внутреннем пространстве.Всасывание в 5 Па считается удовлетворительным, когда дом находится в наихудших условиях разгерметизации (т. Е. Дом закрыт, все вытяжные вентиляторы и устройства работают, а система HVAC работает с закрытыми внутренними дверями). После испытания отверстие необходимо закрыть.
Системы
PSD требуют почти идеальной герметизации проемов в почве, поскольку система использует 3- или 4-дюймовую трубу для более эффективной вентиляции, чем весь дом. Герметизация отверстий в почве менее критична для борьбы с радоном с помощью систем ASD, хотя это очень желательно для ограничения потерь энергии, связанных с утечкой кондиционированного воздуха в помещении в подстилку без давления, а оттуда на улицу.Срок службы вентиляторов ASD составляет в среднем около десяти лет, причем ожидаемый срок службы увеличивается, если вентилятор защищен от непогоды. Поскольку система ASD может быть отключена жильцами, сервисные выключатели обычно располагаются в зонах с ограниченным доступом.
Для получения дополнительной информации посетите Центр решений Building America.
Фундамент крепкого дома: материалы, вес и процесс
Фундамент дома вечен, поэтому имеет смысл обратить внимание на детали, которые гарантируют, что он останется сухим и без трещин до тех пор, пока дом будет выдерживать.
Какова основная цель фонда?
Правильный фундамент не просто удерживает дом над землей. Фундамент здания также защищает от влаги, изолирует от холода и препятствует движению земли вокруг него. О, и еще одно: это должно длиться вечно. Неудивительно, что такие строители, как генеральный подрядчик This Old House Том Сильва, серьезно относятся к фундаменту. «Без хорошего, — говорит он, — ты утонул».
Что делает фундамент хорошего здания?
Для Тома «хорошо» означает железобетонные фундаментные стены и опоры из заливного бетона.Для сравнения: все кропотливо собранные фундаменты из камня, кирпича и раствора, которые поддерживали здания на протяжении веков — даже стены из бетонных блоков, которые большинство строителей использовали, когда этот старый дом был построен 25 лет назад, — просто трещины и протечки склонные динозавры.
Как делается фундамент здания?
Для строительства хорошего фундамента требуется гораздо больше, чем просто выкопать яму и заливать бетон в формы. Он должен быть адаптирован к своему месту, как индивидуальный костюм, с учетом условий почвы, уровня грунтовых вод и даже качества засыпки.
И, как и в случае с индивидуальным костюмом, каждая деталь должна быть безупречной: основание должным образом уплотнено, опалубка установлена правильно, бетон не имеет пустот. Пренебрегайте даже одним из них, и самый тщательно залитый фундамент может выйти из строя.
Вот как Том строит прочный фундамент, пока не появится лучший метод.
Факты о Фонде
- Вес среднего дома: 50 тонн
- Вес среднего фундамента: 7 ½ тонны
- Доля от общей стоимости проекта: 8-15%
- Фундаменты по материалам: 81% заливные, 16% блочные, 3% прочие
- Фундаменты по регионам: Северо-восток 89% заполнен подвал; Средний Запад 75% подвал; Юг 66% плита; Западная 63% плита
Отвес и ровный фундамент стены
Ян Уорпол
Когда Том Сильва строит дом, он хочет, чтобы фундаментные стены были отвесными и ровными, без изменений цвета, которые являются признаками слабого бетона.На иллюстрации показано, как он хочет, чтобы фундамент выглядел перед тем, как приступить к обрамлению.
Требования к фундаментному перекрытию
Требования к плиточному фундаменту аналогичны: прочное основание и паронепроницаемая железобетонная подушка, лежащая на подушке из уплотненного щебня. Основное различие между этими типами фундамента дома состоит в способе изоляции плиты для защиты от сильного мороза
Почему рушится фундамент дома
- Непористая засыпка. Грунты, заполненные глиной или органическими веществами, удерживают воду, как губка, увеличивая риск образования трещин в фундаменте при замерзании и расширении почвы.
- Поспешное лечение. Бетон должен затвердевать медленно, чтобы достичь надлежащей прочности (обычно 3000 фунтов на квадратный дюйм). Держите его во влажном состоянии не менее трех дней, завернув в полиэтилен, опрыскивая водой и используя другие методы.
- Недостаточное уплотнение. Если плита залита щебнем, который не был плотно утрамбован, он, скорее всего, осядет или потрескается.
- Прерывание заливки. Бетонную форму нужно заполнить за один раз. Если вы остановитесь и вернетесь на следующий день, чтобы закончить работу, между свежим бетоном и вчерашней работой будет «холодный стык», который может треснуть и протечь.
Как видно по ТВ
PreCast Foundation
На проекте в Эктоне, штат Массачусетс, Том Сильва сократил свой плотный график на несколько дней, используя для пристройки сборные фундаментные панели. Когда они прибыли на строительную площадку, кран просто опустил их на уплотненный камень, где они были склеены полиуретановым клеем.
Не было ни опор, ни форм, ни стяжек, которые нужно было использовать, и никакой гидроизоляции; Бетон плотностью 5000 фунтов на квадратный дюйм и интегральная изоляция из пенопласта препятствуют миграции влаги. Установленные панели обычно стоят примерно на 10 процентов дороже, чем заливной фундамент. «Нам они очень понравились, — говорит Том. «Я уверен, что мы будем использовать их снова».
Плита тепла
Скажите «плита подвала», и большинство людей подумает «холодно и сыро». Иначе обстоит дело с проектом в Биллерике, штат Массачусетс, где Ричард Третви, эксперт по сантехнике и отоплению компании TOH, имел несколько сотен футов труб из PEX (тот же материал, который используется для обогрева лучистых полов), намотанных поверх 1-дюймового пенопласта, и закопал его. в 6 дюймов бетона.
После подключения труб к котлу цокольный этаж прогрелся до комфортных 68 градусов. Слева сантехник Брайан Било использует ту же систему для обогрева дорожек.
Одноступенчатые пирсы
Хотя настилы и небольшие хозяйственные постройки могут не нуждаться в полном фундаменте, они все же требуют прочной опоры из опор, опирающихся на хорошо заглубленные опоры. Обычно опоры и опоры заливают в отдельные дни, чтобы дать бетону время застыть. Теперь Том делает это за один раз, используя пластиковые опоры в форме воронки, снабженные цилиндрическими опорами.«Насколько я понимаю, лучшего способа сделать бетонный пирс нет, — говорит он.
Новые технологии — основа будущего
Самовыравнивающийся бетон
Новое химическое вещество, называемое пластификатором «супер-супер», позволяет заливать смесь, которая течет почти как вода, но сохраняет структурную целостность. (Обычно слишком тонкая смесь позволяет заполнителю осесть на дно до того, как бетон затвердеет, что приводит к более слабой стене.)
«Вы можете приподнять грузовик до угла и залить фундамент целиком», — говорит Эд Заутер, исполнительный директор Ассоциации бетонных фундаментов.«Он просто распространяется повсюду». Это лучше, чем перекачивать или перекачивать бетон там, где это необходимо. И, как вода на поверхности озера, верх «супер-супер» пластифицированного бетона автоматически устанавливает уровень, что является хорошим началом для каркаса.
Опоры тканевые
Вместо того, чтобы кропотливо строить опоры из досок, некоторые подрядчики по строительству фундаментов используют легкие опалубки из полиэтилена высокой плотности. Эти гибкие тканевые системы легко адаптируются к наклонным и неровным участкам, что упрощает выемку грунта, а ткань остается на месте в качестве встроенной гидроизоляционной мембраны.Выпуклые стороны готовой опоры также помогают отводить воду от фундамента.
Где найти
Сборный фундамент:
Superior Walls of America Ltd.
Ephrata, PA
800-452-9255
Тканевая основа:
Fastfoot от Fab-Form Industries Ltd.
Суррей, Британская Колумбия, Канада
888-303-3278
Пластиковые опоры:
Bigfoot Systems
F&S Manufacturing Inc.
800-934-0393
www.bigfootsystems.com
Благодарность:
Ассоциация бетонных фундаментов
Маунт-Вернон, ИА
866-232-9255
www.cfawalls.org
Руководство по строительству жилых домов для одной семьи
Руководство по строительству жилых домов для одной семьи — Basic Fndn. И 1-й
Этаж
ОСНОВНЫЕ ТРЕБОВАНИЯ К ФУНДАМЕНТУ И КОНСТРУКЦИИ ПЕРВОГО ЭТАЖА
Быстрый указатель
Выдержки из Единого строительного кодекса 1994 г. TM, авторское право ©
1994, включены в это руководство с разрешения издателя
Международная конференция строителей.
Опоры и фундаменты
В городе Пало-Альто установлены минимальные требования к основанию для всех жилых домов.
постройка в один-два этажа высотой. Опора должна быть 14 дюймов.
шириной на 20 дюймов (ниже уровня земли), сплошной бетон с № 4 (минимум)
стальные арматурные стержни (1/2 дюйма). Он должен выступать как минимум на 6 дюймов выше
оценка. Он может быть сформирован как основа типа «тройник» или «тесто» или залит
плита. Рисунки, на которых изображены эти два типа, соответствуют схеме «Плита на уровне».
раздел.Одноэтажные отдельно стоящие вспомогательные постройки, такие как гаражи и навесы для автомобилей,
может иметь меньшую непрерывную опору, шириной 12 дюймов на 12 дюймов
глубоко ниже уровня земли с одной штангой №4 (1/2 дюйма).
Перед заливкой бетона необходимо очистить нижнюю часть фундаментов.
из; удаление рыхлой почвы, дерева или мусора. Корни тоже нужно удалить.
Вся арматурная сталь должна быть защищена от контакта с почвой или формами.
(Примечание: использование стальных стержней, вбитых в землю для поддержки арматурных стержней,
запрещенный.) От арматурных стержней требуется зазор в три дюйма
по бокам и низу несформированных опор (отливать прямо в грязь
поверхности), и необходим зазор 2 дюйма со сторон, где используются формы.
Арматурная сталь при сращивании должна иметь минимальный нахлест 12 дюймов для № 4.
стержни и 15 дюймов для стержней №5 (5/8 дюйма). Где пересекается новая основа
существующее основание, новая арматура должна быть закреплена шпонками минимум на 6 дюймов
в существующую основу.
Блоки опор из сборных балок должны быть установлены в бетонный фундамент площадью 18 дюймов.
на 6 дюймов в глубину.Раскопки пирса должны присутствовать во время
осмотр фундамента.
Деревянные опалубки, расположенные в земле или между опорами фундамента и
грунт, необходимо удалить после заливки бетона.
Плиты на марке
Бетонные плиты, опирающиеся непосредственно на землю, не могут быть меньше 3 1/2
дюймов толщиной. Требуется сплошная опора по периметру, как описано выше.
Любой трубопровод (например, трубопровод лучистого тепла) должен иметь минимальное покрытие 1 1/2 дюйма.
дюймы.Электропровод, если он используется в плите, должен иметь длину не менее 2 дюймов.
крышка. Для этого потребуется плита толщиной 5 дюймов или больше. Любой
арматура в плитах на уклоне должна иметь зазор 2 дюйма от почвы.
Если для межкомнатных перегородок будут использоваться еловые подоконники, то пароизоляция
не менее 6 мил висквины.
Балки перекрытия, фермы и стойки
Деревянные балки, нижняя часть деревянных полов размером менее 18 дюймов или древесина
фермы ближе 12 дюймов к земле в области под полом, должны
быть красным деревом или пиломатериалом, обработанным давлением.Балки, входящие в кладку или бетон
стены должны иметь минимальную опору 3 дюйма и не менее 1/2 дюйма
воздушное пространство сверху, по бокам и по краям, если они не сделаны из красного дерева или обработаны давлением
пиломатериалы. Стойки, поддерживающие балки, должны полностью опираться на пластины из красного дерева, установленные в
или на пристани. Нижняя часть стоек должна быть минимум на 6 дюймов выше.
оценка.
Стыки балок должны происходить над стойками и должны быть снабжены стыковочной вставкой.
из дерева или стали, чтобы соединить их концы.
Требуется прочная 2-кратная номинальная блокировка на концах балок и по всей опоре.
точки.Блокировка может быть опущена, если концы балок прибиты к заголовку.
или балка обода. Балки размером 2 x 12 или более должны быть заблокированы с интервалами, чтобы
превышают 8 футов-0 дюймов. Балки должны быть сложены вдвое под параллельными несущими стенами выше.
Триммерные балки и балки на проемах должны быть удвоены, когда
превышает 4’0 «.
Таблицы пролета включены в этот буклет для традиционных методов обрамления,
на основе равномерных нагрузок. Таблицы следуют за разделом «Крыша и потолок».
Обрамление.
Балочный каркас с противоположных сторон балки, балки или перегородки должен быть
нахлест минимум на 3 дюйма, или противоположные балки должны быть связаны вместе
утвержденным образом.
Пазы и отверстия
сек. 2326.12.4. Насечки и отверстия. Надрез на концах стропил
потолочные балки не должны превышать одной шестой глубины и не должны располагаться
в середине одной трети пролета, за исключением того, что надрез не более одного
треть глубины допускается в верхней части стропильной или потолочной балки
не дальше от поверхности опоры, чем на глубину элемента.
Просверленные отверстия в стропилах или балках потолка не должны быть ближе 2 дюймов (51
мм) верха и низа, а их диаметр не должен превышать одной трети
глубина члена.
Вентиляция под полом
Под полом необходимо проветривать либо механически, либо через отверстия.
во внешних стенах фундамента. Отверстия должны иметь чистую площадь 1
квадратный фут на каждые 150 квадратных футов площади под полом и должен располагаться
для обеспечения поперечной вентиляции. Отверстия должны быть защищены от коррозии.
прочная проволочная сетка с отверстиями размером 1/4 дюйма.
Черновой пол из фанеры
Прибивка фанерного пола должна быть 6 дюймов по центру по всем краям и
10 дюймов по центру на промежуточных опорах.Толщина фанеры будет
определяться расстоянием между балками и индексом идентификации панели
выбранная для использования фанера. Все кромки фанерного пола должны быть шип-паз.
суставы или должны поддерживаться блокировкой.
Плотный фундамент — когда использовать, типы, конструкция
Плотный фундамент — это очень часто используемый тип системы фундаментов. Плотный фундамент также известен как матовый фундамент. Определение основания плота, принцип работы, выбор плота, типы фундамента плота, материалы фундамента плота, этапы строительства плота и т. Д. Обсуждаются ниже.
Что такое Raft Foundation?
Плотный фундамент на самом деле представляет собой толстую бетонную плиту, опирающуюся на большую площадь почвы, армированную сталью, опорными колоннами или стенами и передающими нагрузки от конструкции к почве. Обычно матовый фундамент покрывает всю площадь конструкции, которую он поддерживает.
Плотный фундамент обычно используется для поддержки конструкций, таких как жилые или коммерческие здания с плохим состоянием почвы, резервуары для хранения, силосы, фундаменты для тяжелого промышленного оборудования и т. Д.
Принцип работы плотного фундамента
Чтобы лучше понять, когда использовать плотный фундамент, важно понимать, как работает плотный фундамент. Давайте кратко рассмотрим принцип его работы.
Плотный фундамент передает общую нагрузку от здания на всю площадь первого этажа. Механизм распределения напряжений в плотном фундаменте очень прост. Рассчитывается общий вес конструкции и собственный вес мата, которые делятся на общую площадь основания, которое он покрывает, для расчета нагрузки на грунт.
Как и в случае фундамента на плоту, площадь контакта фундамента с грунтом намного больше, чем у любого другого типа фундамента, поэтому нагрузка распределяется на большую площадь, и, таким образом, нагрузка на грунт меньше, а возможность разрушения при сдвиге почва также уменьшается.
Когда выбирать плотный фундамент
При проектировании фундамента одним из наиболее важных аспектов является выбор правильного типа фундамента. Плотный фундамент предпочтительнее, если:
- Грунт имеет низкую несущую способность.
- Нагрузка на конструкцию должна распределяться по большой площади.
- Отдельная или любая другая площадь фундамента должна покрывать приблизительно 50% общей площади земли под конструкцией.
- Колонны или стены расположены так близко, что отдельные опоры перекрывают друг друга.
- Необходимо снизить нагрузку на почву.
- Есть возможность дифференциальной осадки при использовании индивидуальных опор.
- Когда слои почвы непредсказуемы и содержат карманы сжимаемого грунта.
- Подвал будет построен.
- Никакие другие типы опор использовать нельзя.
Типы плотного фундамента
В зависимости от состояния грунта и нагрузки на фундамент можно использовать несколько типов плотного фундамента.
Ниже приведены различные типы фундаментов на плотах, используемых в строительстве:
- Мат из плоских пластин
- Пластина с утолщением под колонной
- Двусторонняя балка и плита для перекрытий
- Платформа для плит с подставками
- Плита из плит
- Коврик для жесткой рамы или Cellular Raft Foundation
Ниже кратко описаны различные типы матов.
1. Плоский мат
Это самая простая форма фундамента на плоту. Этот тип мата используется, когда колонны и стены равномерно расположены с небольшими интервалами, а подвергаемые нагрузки относительно невелики. Армирование размещается в обоих направлениях, и требуется дополнительное армирование в местах расположения колонн и несущих стен. Толщина плота такого типа обычно ограничивается 300 мм по экономическим причинам. Более толстая плита была бы неэкономичной.
2.Пластина утолщена под колоннами
Когда колонны и несущие стены подвергаются более сильным нагрузкам, плита утолщается под колоннами и стенами, и предоставляется дополнительное армирование для противодействия диагональному сдвигу и отрицательному армированию.
3. Двусторонняя балка и плита
В этом типе плота балки отливаются монолитно, при этом плита плота соединяет колонны и стены. Этот тип плота подходит, когда колонны расположены на большем расстоянии и нагрузки на колонны переменные.
4. Пластины с подставками
В этом типе мата подставка предусмотрена у основания колонн. Назначение этого типа фундамента такое же, как плоская плита, утолщенная под колонны.
5. Свайный плот
Этот тип плотного фундамента опирается на сваи. Свайный плот используется, когда почва на небольшой глубине сильно сжимается, а уровень грунтовых вод высокий. Сваи под плотом помогают уменьшить осадку и обеспечивают сопротивление плавучести.
6.Жесткий каркасный мат / фундамент из ячеистого плота
В этом типе плота стены фундамента действуют как глубокая балка. Коврик с жесткой рамой применяется, когда колонны несут чрезвычайно большие нагрузки, а глубина соединительных балок превышает 90 см. Здесь кладут две бетонные плиты одна на другую и соединяют их со стенами фундамента в обоих направлениях, образуя таким образом ячеистый плотный фундамент. Этот тип плота очень жесткий и экономичный, когда требуемая толщина плиты очень велика.
Материалы, используемые для строительства плотного фундамента
Вот некоторые материалы, использованные для возведения плотного фундамента —
- Опалубка
- Распорка
- Армирование
- Бетон.
Процесс строительства плотного фундамента
Ключевые этапы строительства плотного фундамента указаны ниже.
- Определите желаемую глубину, на которой должен быть предусмотрен фундамент.