Бетон и жидкое стекло пропорции: пропорции и инструкция по применению
- пропорции и инструкция по применению
- Как правильно смешать жидкое стекло с цементом: пропорции, советы и рекомендации
- Цемент с жидким стеклом: пропорции, применение, приготовление
- Жидкое стекло для бетона: приготовление, пропорции, советы
- Как правильно смешать цемент с жидким стеклом
- Жидкое стекло и цемент: пропорции раствора и особенности
- пропорции раствора с песком для гидроизоляции
- Методы дозирования цемента, песка и заполнителей в бетоне
- Влияние размера частиц и цементной замены порошка ЖК-стекла в бетоне
- 1. Введение
- 2. Материалы и методы
- 2.1. Материалы
- 2.2. Образцы и параметры испытаний
- 2.3. Методы анализа
- 3. Результаты и обсуждение
- 3.1. Характеристики LGP
- 3.2. Содержание воздуха
- 3.3. Осадка
- 3.4. Прочность на сжатие
- 3.5. Прочность на растяжение при раскалывании
- 3.6. Межфазная микроструктура бетона
- 3.7. MIP
- Введение в GFRC (бетон, армированный стекловолокном)
- Прочность и характеристики разрушения самоуплотняющегося бетона, содержащего переработанные стеклобойные отходы
пропорции и инструкция по применению
Жидкое стекло — это химическое вещество, разработанное для добавления в бетон или обработки его поверхности. Как и другие подобные средства, оно используется для улучшения характеристик монолитных конструкций.
С помощью этой присадки можно влиять на скорость схватывания бетонной смеси, а также свести к минимуму разрушительное действие внешней среды.
Отвечая на вопрос, зачем в бетон добавляют жидкое стекло, прежде всего необходимо разобраться в том, что представляет собой эта добавка.
Что такое жидкое стекло для бетона
Термин «жидкое стекло», который часто используют строители, знаком многим. Однако у большинства людей имеются лишь самые приблизительные сведения о составе и способах его применения.
Загрузка … Загрузка …
Средство в расфасовке от 1кг до 200 литров можно найти в магазинах строительных материалов. На вид это тягучая светлая жидкость, иногда имеющая желтоватый или зеленоватый оттенок. По химическому составу добавка представляет собой раствор щелочных силикатов. Отличие жидкого стекла от обычного заключается в том, что при его синтезе не вводится кальций, который заставляет сплав быстро отвердевать. Полученную при высокой температуре смесь кремния и щелочного металла разбавляют водой, что позволяет веществу оставаться в текучем состоянии, пока оно хранится в закрытой таре. На воздухе влага испаряется из смеси, в результате чего она твердеет.
Свойства добавки и область ее применения зависят от металла, который входит в химическую формулу вещества. Известны следующие виды силикатных средств:
- Натриевое. Хорошо себя зарекомендовало как гидроизоляционный материал для подземных бетонных конструкций. Применяется как антисептическое, противокоррозийное средство, помогает склеивать части конструкций, устранять трещины.
- Калиевое. Подходит для защиты бетона от кислотного воздействия, придает ему огнеупорные свойства. Используется как клей для плитки, добавляется в строительные растворы, смеси для наружной отделки здания.
- Литиевое. В строительстве используется редко, подходит для защиты поверхностей от высоких температур.
- Смешанное. Включает в себя калиевую и натриевую составляющие. Свойства зависят от пропорций смеси.
Все виды ЖС не имеют запаха, нетоксичны. В качестве растворителя используется вода.
Для чего добавляют жидкое стекло в бетон
Для изменения свойств бетона с помощью силикатов существует два метода:
- добавление жидкого стекла в бетонный раствор на этапе его замешивания;
- нанесение вещества на поверхность готовых конструкций.
После укрепления жидким стеклом бетон приобретает следующие свойства:
- защиту от воздействия воды. Силикатная добавка заполняет все пустоты внутри монолитной конструкции, препятствуя проникновению влаги;
- термостойкость. Вещество не разрушается при высокой температуре и предохраняет от нее обработанную поверхность. Поэтому цементный раствор с этой присадкой подходит для выкладывания печей и каминов;
- ускоренное застывание. Время отвердевания зависит от того, сколько стекла содержится в растворе бетона. Для быстрой заделки отверстий применяют высокую концентрацию ЖС;
- устойчивость к кислотам. Агрессивное воздействие различных кислот на бетонные конструкции снижается, если поверхность обработана силикатным раствором.
При изготовлении модифицированного бетона с применением жидкого стекла крайне важно соблюдать пропорции ингредиентов.
Способы применения жидкого стекла для бетона
Для гидроизоляции монолитных конструкций жидким стеклом используют наружный и внутренний метод его введения. Выбор делают с учетом того, какие характеристики должен приобрести материал. Кроме этого, приминают во внимание условия его дальнейшей эксплуатации.
Внешняя обработка
Жидкое стекло, нанесенное поверх бетона, пропитывает его наружные слои, оставаясь в мельчайших порах. После застывания силикат запечатывает все отверстия. Частицы влаги не могут проникнуть внутрь, поскольку после кристаллизации ЖС уже не растворяется водой. Таким образом, бетон защищают от влажности, кислот, плесени.
Покрытие бетона жидким стеклом рекомендуется для:
- фундаментов любого типа;
- внутренних поверхностей пола и стен в подвальных и цокольных помещениях;
- балконов;
- бассейнов с бетонными чашами, внутренней части колодцев и т.д.
Нанесение на поверхность ЖС производится не только для предохранения бетона от внешнего воздействия, но и как основа для дальнейшей отделки декоративными смесями. В этом случае силикаты выполняют роль грунтовки.
Добавление в состав бетона
Теперь поговорим о том, в каких случаях жидкое стекло добавляют в бетонный раствор и для чего это делается. Если пропитка защищает лишь наружный слой, то силикатная добавка, введенная при замешивании, делает монолит устойчивым к влаге и перепаду температур по всей толщине. На срезе застывшего модифицированного бетона хорошо видны заполненные пустоты. Возникает вопрос: сколько жидкого стекла нужно добавить в бетон, чтобы достичь такого эффекта и что будет, если превысить норму?
Силикатный клей после отвердевания легко ломается и крошится. Если бетонный раствор содержит большой процент этой добавки, несущая конструкция также становится хрупкой. Поэтому при введении силиката в основной материал необходимо следить, чтобы его доля не превышала 5-10% от общего объема. Чтобы рассчитать, сколько жидкого стекла будет нужно для работы, обычно пользуются следующей пропорцией: 72 литра ЖС на 1 куб бетона.
Силикатный концентрат недопустимо вводить в жидкий бетон напрямую. Обычно используют следующий способ приготовления:
- смешивают отдельно сухие компоненты для бетона;
- в воде для замешивания растворяют силикат;
- затворяют получившейся жидкостью сухие ингредиенты, постоянно перемешивая массу;
- модифицированный раствор как можно быстрее помещают в опалубку.
Если добавить в готовый бетон жидкое стекло в чистом виде, то не получится достичь однородности из-за быстрого схватывания присадки.
Бетон, в процессе изготовления которого было использован силикатный клей, подходит для:
- гидротехнических сооружений;
- подземной части зданий, которые находятся на участках с повышенным уровнем грунтовых вод;
- печей, каминов, в том числе уличных;
- колодцев;
- бассейнов;
- септиков.
Для быстрого устранения протечек применяют цементный раствор, который содержит силикаты. Способность такого материала схватываться сразу после нанесения помогает устранять аварийные ситуации.
Плюсы и минусы
Обработка бетона жидким стеклом и введение этой добавки в состав строительного материала придают ему ряд положительных характеристик:
- защиту от повышенной влажности;
- устойчивость к воздействию кислот;
- сохранение свойств бетона при перепадах температур;
- защиту от грибка;
- пропитка силикатом делает поверхность менее уязвимой к механическому воздействию;
- с помощью ЖС создается гладкое покрытие, надежно зафиксированное на основе.
В список достоинств можно внести невысокую цену добавки и ее экономный расход. Срок службы покрытия — 5 лет. По истечении этого времени наносят новый слой.
Минусы силикатных добавок:
- малый срок застывания, который затрудняет обработку больших поверхностей;
- необходимость дополнительно защищать слой ЖС рулонной изоляцией из-за его хрупкости;
- трудоемкость сверления, штробирования модифицированного бетона;
- необходимость следить за состоянием застывшей пленки, так как при ее растрескивании снижается гидроизоляция;
- невозможность нанесения состава на кирпич;
- несовместимость ЖС с растворителями;
- ухудшение свойств бетона при несоблюдении пропорций добавки.
Инструменты для пропитки
Перед пропиткой бетонного основания жидким стеклом его поверхность должна быть подготовлена. Для этого используются следующие инструменты:
- шлифовальные машины, ими выравнивают поверхность бетона. Также необходимы диски для шлифмашины;
- пескоструйные, дробеструйные машины. Очищают основание от ржавчины и грязи;
- жесткие щетки. Применяют для очистки небольших поверхностей;
- строительные пылесосы. Необходимы для удаления песка, пыли;
- дрель с миксерной насадкой. Используют для приготовления жидких смесей.
Для нанесения силикатного раствора подойдут:
- флейцевые (плоские) кисти различного размера, равномерно распределяющие вещество по поверхности. Тип ворса — смешанный;
- велюровые валики с ворсом средней длины. Удобнее всего использовать инструмент с телескопической ручкой для регулирования ее длины;
- краскопульты. Подходят для обработки больших поверхностей — потолков, стен, чаш бассейна.
Так как при зачистке в воздухе содержится пыль, необходимо обезопасить легкие от ее проникновения. Для этого подойдет респиратор. При нанесении жидкого стекла можно воспользоваться спецодеждой, перчатками. Защитные очки помогут уберечь глаза от попадания грязи и щелочного раствора.
П
Как правильно смешать жидкое стекло с цементом: пропорции, советы и рекомендации
Дата: 12 ноября 2018
Просмотров: 19150
Коментариев: 2
Широко распространено добавление жидкого стекла в цементные составы при выполнении строительных работ. Оно ускоряет твердение бетона и повышает устойчивость к проникновению влаги. Состав представляет собой раствор силиката натрия или калия. Его изготовление осуществляется путем высокотемпературной обработки соды, кварцевого песка с уменьшением гранулометрических характеристик и растворением в воде.
Вводят жидкое стекло в раствор цемента при строительстве бассейнов, гидротехнических объектов, фундаментов, обустройстве печей и выполнении стяжки. Кроме того, незаменимо жидкое стекло для подготовки составов, если необходима штукатурка, обладающая высокой адгезией. Жидкое стекло с цементом, пропорционально смешанные, придают бетону огнеупорные и кислотоупорные свойства.
Введение жидкого стекла в цементный состав оправдано при сокращенных сроках выполнения строительных мероприятий. Применение жидкого стекла в строительных растворах требует соблюдения необходимой концентрации, так как отклонения от рекомендуемых пропорций связаны с непредсказуемыми изменениями характеристик.
Добавка жидкого стекла в раствор в зависимости от его количества придаст различные свойства готовому материалу
Рекомендуемые соотношения
Смешивайте цемент с жидким стеклом со строгим соблюдением рекомендуемых пропорций. Ошибка может вызвать разрушение или растрескивание конструкции. Процентное соотношение добавок, вводимых в цементный раствор, определяется с учетом объема цемента.
[testimonial_view id=”2″]
Применение жидкого стекла в строительных растворах осуществляйте, согласно следующим рекомендациям:
- Жидкое стекло как гидроизоляционная добавка позволяет приготовить водостойкую штукатурку. Для раствора используйте 15% состав композита и смешайте с песчано-цементной смесью, соотношением 2,5:1.
- Жидкое стекло с цементом для выполнения гидроизоляции бассейнов смешивайте, соблюдая пропорцию: на 10 объемных частей смеси должна быть добавлена одна порция силиката.
- Цемент и жидкое стекло, а также песок, используемые, как защитные составы при изготовлении колодцев, применяйте в соотношении 1:1:1. Общая консистенция смеси должна соответствовать вязкости густой сметаны.
- Жидкое стекло для бытовых целей следует добавлять в бетон объемом не выше 10% от общего веса.
- Жидкое стекло и цемент, совместно с песком, перемешивается в соотношении 1,5:1,5:4 для подготовки обмазочных составов, обладающих огнеупорными свойствами. Доля воды для этого рецепта составляет не более четверти от общего объема добавки.
Для снижения твердеющих свойств рекомендуется сначала смешать жидкое стекло с водой, и только потом добавлять его в песчано-цементную смесь
- Жидкое стекло для подготовки обычного бетона применяйте, не превышая его концентрацию выше 3% от общего объема.
- Цементный раствор с жидким стеклом смешивайте для грунтования в равных соотношениях. Песок для этой операции не применяется, а на общий объем силиката добавляйте четвертую часть воды. Разводить следует вначале цементный раствор. Затем полученный цемент порциями добавляйте в емкость с силикатом, непрерывно помешивая.
Процесс приготовления
Как сделать самостоятельно раствор с добавлением силикатов? Соблюдайте последовательность операций:
- возьмите одно ведро чистой воды;
- добавьте стакан силиката;
- перемешайте, полностью растворив средство;
- перелейте смесь;
- введите, при помешивании, сухую цементно-песчаную смесь;
- используя смеситель, взбейте массу до однородности;
- заполняйте массой подготовленный объем.
На таком цементном растворе, приготовленном небольшими порциями, будет обеспечено высокое качество строительных работ.
Затвердевание
Помните, что продолжительность твердения обратно пропорциональна процентной доле силикатов. От того, сколько их введено, зависит время полного высыхания и начало схватывания. Рассмотрим на конкретных примерах:
- Цементный состав с 2-процентным содержанием добавок полностью высыхает за сутки, а начинает схватываться через 40 минут.
- При увеличении процентной доли силиката до 10%, продолжительность высыхания уменьшается до 4 часов с соответствующим сокращением начала схватывания до 5 минут.
Временные интервалы приведены для бетона, имеющего марку М400. Обратите внимание, что, несмотря на рекомендации сомнительных источников, советующих вводить добавок порядка 25%, это делать не следует. Такой массив рассыпается уже через сутки, и работы приходится выполнять повторно.
Заключение
Соблюдайте, готовя силикат и смешивая цемент, пропорции. Это позволит достичь требуемых эксплуатационных характеристик. Выполняйте рекомендации и эффект гарантирован!
На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.
Цемент с жидким стеклом: пропорции, применение, приготовление
Воздействие на бетонную поверхность негативных внешних факторов приводит к ухудшению технических характеристик покрытия. Применение жидкого стекла в бетоне поможет повысить сопротивляемость возводимой или готовой конструкции к негативному воздействию осадков, резких перепадов температур и других факторов, под влиянием которых свойства поверхностей из бетона существенно ухудшаются. Перед тем как начать использовать такую защитную смесь, рекомендуется изучить ее технические характеристики, правила приготовления, а также плюсы и минусы применения.
Что собой представляет?
В классических бетонных смесях основными компонентами выступают:
- песок;
- цемент;
- щебень.
Увеличить сроки эксплуатации сооружения поможет добавление в строительный раствор жидкого стекла.
Добавив к сухому составу воду, удастся получить прочный строительный материал для заливки фундамента, бетонного пола, а также возведения конструкций различного предназначения. Однако иногда физико-технических свойств такого бетона недостаточно, чтобы сооружение надежно выполняло свои функции. Для улучшения технических характеристик раствора используется специальная добавка в бетон на основе жидкого стекла. Получается надежное, устойчивое к воздействию негативных внешних факторов покрытие, благодаря которому конструкция прослужит намного дольше заявленного срока.
Свойства материала
Использование жидкого стекла в бетоне позволяет добиться таких результатов:
- Увеличить влагостойкость. Такая защита необходима для сооружений, постоянно контактирующих с водой. Это может быть бассейн, сырой подвал, резервуары, кольца колодца и т. д.
- Ускорить застывание. Если приготовить классический бетонный раствор с использованием пропитки, время для твердения готового состава намного сократится. Достаточно будет 24 ч., чтобы поверхность стала готовой к дальнейшим строительным работам, в то время как обычный раствор сохнет 3—5 дней.
- Повысить гидроизоляционные свойства. Жидкое стекло для гидроизоляции бетона добавляют для предотвращения появления плесени и грибков на поверхности. Дело в том, что особый состав изделия имеет бактерицидное воздействие, благодаря которому шансов на развитие и размножение у микроорганизмов нет.
- Повысить жаропрочность. Поверхность, на которую наносят обычный бетонный раствор, может устоять при температуре до 200 °C, если больше, штукатурный слой разрушится. Но когда добавлять в раствор жидкостекольное средство и обработать им конструкцию, оно сможет выдержать температуры 1400 градусов и больше. Поэтому при строительстве камина или печи целесообразно приготовить цементный раствор с жидким стеклом.
Применение
Водоотталкивающие свойства материала позволяют использовать его при сооружении чаш для бассейна или при гидроизоляции фундамента.
Сферы применения этого качественного материала обширные. Изделие предназначено для следующих целей:
- Изготовление бетона, обладающего специальными характеристиками, такими как морозостойкость, огнестойкость, кислотоупорность.
- Гидроизоляция фундамента, если он обустроен в месте неглубокого залегания грунтовых вод.
- Гидроизоляция стен, подвальных помещений, стяжки полов.
- Обустройство чаш бассейна, стенок колодцев.
- Производство штукатурки, обладающей водоотталкивающими свойствами.
- Изготовление огнеупорного раствора для оштукатуривания и заделки стыков при обустройстве каминов, печей, барбекю.
Преимущества и недостатки
Жидкое стекло для бетона обладает рядом преимуществ, среди которых главными являются такие:
- многофункциональность;
- повышение адгезии;
- образование на поверхности оболочки, надежно защищающей поверхность от грунтовой и атмосферной влаги;
- надежная защита и укрепление обработанной конструкции;
- быстрые сроки затвердения;
- несложное приготовление и нанесение;
- доступная цена.
Бетонная смесь с добавкой быстро затвердевает, поэтому работать с ней надо поспешно.
Однако прежде чем проводить железнение бетона жидким стеклом, необходимо взвесить все за и против, потому что помимо достоинств, такой способ защиты имеет и недостатки. Основными считаются такие:
- Быстрое затвердение, из-за чего процесс заливки может утрудниться, потому что работать придется быстро.
- Узконаправленность. Наносить материал в целях влагозащиты целесообразно только на бетонную и деревянную поверхность. Для других видов строительных растворов он не подходит.
- Необходимость строгого соблюдения пропорции. Если инструкция приготовления смеси не соблюдается, готовый раствор получится малоэффективным.
Приготовление раствора
Инструменты и материалы
Технология изготовления бетонной смеси с добавлением жидкого стекла несложная. Сделать раствор можно и своими руками, но прежде следует подготовить инвентарь:
- емкость для замешивания раствора;
- специальная насадка на дрель, благодаря которой удастся быстро смешать компоненты;
- кисть, валик или пульверизатор;
- уровень, с помощью которого контролируется горизонталь или вертикаль обрабатываемой поверхности.
Раствор с жидким стеклом не делается в бетономешалке, потому как процесс застывания происходит раньше окончания приготовления.
Бетономешалка для смешивания компонентов раствора не подойдет, потому что раствор начнет затвердевать еще до окончания приготовления. С помощью механической мешалки можно лишь соединить все материалы, но без добавления жидкого стекла. Затем нужное количество пропитки добавляется и перемешивается вручную. Из материалов понадобятся:
- цемент;
- просеянный песок;
- чистая вода.
Расчеты и пропорции
Чтобы правильно рассчитать пропорции жидкого стекла в общей массе раствора, важно определиться, за какой промежуток времени состав должен застыть. Исходя из этого критерия, рекомендуется изучить таблицу:
Расход жидкого стекла, % | Начальное схватывание, мин. | Окончательное застывание, час. |
2 | 40—45 | 20—24 |
5 | 25—30 | 14—17 |
8 | 10—15 | 6—8 |
10 | 5—10 | 2—4 |
Распространенное соотношение цемента, песка и жидкостекольной пропитки такое:
Гидроизоляционное покрытие со специальной добавкой готовиться с разбавлением в одной литре воды.
- Для изготовления надежного гидроизоляционного покрытия необходимо разводить жидкое стекло в 1 литр воды.
- Для получения пластификатора универсального назначения требуется смешать цемент и песок (пропорция 1:3), затем добавить к ним силикатный материал объемом 1/5 от общего количества массы.
- Если нужно покрыть и пропитать готовую оштукатуренную поверхность, вода и жидкостекольная пропитка смешиваются в соотношении 5:1 соответственно. Затем готовый раствор нужно нанести на бетон.
- Для приготовления огнеупорного раствора в стандартную цементно-бетонную смесь добавляется до 5% силикатной пропитки.
Приготовление: основные правила
Обработка бетона жидким стеклом будет проходить быстро и качественно, если масса будет приготовлена правильно. Порядок действий такой:
- Приготовить 10 л чистой, профильтрованной воды. Техническая вода не подойдет, потому что соли и другие примеси, содержащиеся в ней, негативно влияют на реакцию.
- Набрать в стакан жидкое стекло и аккуратно лить его в воду, осторожно перемешивая состав до получения однородной консистенции.
- Готовый раствор перелить в таз, а после, аккуратно перемешивая все, добавить цементно-песчаную смесь в рассчитанных пропорциях. Добавление жидкого стекла в бетон без предварительного разведения в воде запрещено, потому что готовое изделие не будет соответствовать заявленным характеристикам.
- Взбить массу строительным миксером или дрелью со специальной насадкой.
- Готовым изделием заливается горизонтальная поверхность, например, опалубка или им можно покрыть стены.
Вертикальная поверхность после обработки жидким стеклом станет абсолютно гладкой. Если планируется дополнительная декоративная отделка, то для создания шершавости и надежной сцепки с применяемым материалом, рекомендуется дополнительно покрыть стену строительным средством «Бетоноконтакт».
Техника безопасности
Жидкое стекло не относится к веществам, обладающим высоким уровнем токсичности. Но если материал попадает на кожу или слизистую, он вызывает раздражение. Чтобы избежать травмирования, во время работы следует использовать спец. одежду, на руки надевать специальные перчатки, а глаза защищать защитными очками. Помещения, где проводятся строительные работы с использованием жидкого стекла, должны постоянно проветриваться. Если случилось так, что готовый раствор попал на кожные покровы, необходимо обработать поврежденный участок слабым раствором уксуса, разведенным в чистой воде.
Жидкое стекло для бетона: приготовление, пропорции, советы
С целью придания водоизоляционных качеств застывающей массе и для улучшения ее прочности, используется жидкое стекло для бетона. Также состав ускоряет процесс застывания цементной массы. Перед началом работы по укладке бетона с использованием силиката, надо изучить принципы правильного приготовления такого раствора.
Для чего в бетон добавляют жидкое стекло
Строительная смесь изготавливается путем перемешивания пропорций песка, щебня, цемента. Он получается прочный, но бывает так, что требуется добавление пластификаторов. Таковым выступает жидкое стекло (ЖС). На раствор оказываются следующие воздействия:
- Повышается влагоустойчивость. Это важно при формировании конструкций, находящихся в постоянном контакте с водой либо во влажных помещениях.
- Процесс застывания сокращается во времени, но требуется температура окружающего пространства в пределах 20 градусов.
- Раствор приобретает гидроизоляционные свойства.
- Приобретенная антибактериальность препятствует размножению бактерий, плесени.
- Увеличивается прочность на истирание.
- Смесь получается эластичной, что облегчает нанесение.
- Повышается устойчивость к повышенным температурам. Раствор с ЖС способен выдержать температуру в 1400 градусов, при этом обычный состав противостоит 200 градусам. И после длительного нагрева способен разрушиться. Эти нюансы важны при кладке печей и каминов.
Читайте также: Как выбрать жидкое стекло для дерева?
Как правильно приготовить бетонный раствор с жидким стеклом
Если замешивание выполняется первый раз в домашних условиях, то в таком случае необходимо подробное изучение пропорций составляющих. Несоблюдение повлечет за собой непрочность конструкции.
Инструменты для работы
Перед началом работы подготавливается инструмент и материалы, которые понадобятся в процессе замешивания раствора:
- Жидкое стекло.
- Песок (требуется просеять), цемент, вода.
- Емкость для замеса.
- Дрель с насадкой для равномерного размешивания.
- Средства личной защиты.
Пропорции жидкого стекла
Рекомендовано использовать для замеса соотношение бетона с жидким стеклом 1:10. Так как добавление ЖС в бетон влияет на время застывания.
Читайте также: Какой клей выбрать для монтажа фанеры на бетонную стяжку?
Применяемые пропорции:
- Доля клея в бетонной смеси 2% – начальное схватывание наступит через 45 минут, конечное – сутки.
- 5% силиката натрия в растворе – начальное схватывание через полчаса, конечное – 16 часов.
- 8% силиката натрия в растворе – начальное схватывание через 15 мин, конечное – 8 часов.
- 10% силиката натрия в растворе – начальное схватывание через 5 мин, конечное – 4 часа.
Данные пропорции применимы для цемента марок М300, М400.
Повышенный процент содержания силиката приведет не к улучшению качественного состава, а поспособствует разрушению конструкции в ходе эксплуатации.
Правильно готовится смесь при следующем способе с применением строительного миксера:
- Одно ведро воды, очищенной от примесей и добавок.
- Вылить стакан силиката, тщательно перемешать.
- Вылить массу в емкость большего объема.
- Добавить состав цемента с песком. Постоянно производить перемешивание миксером (либо дрелью с наконечником).
- Смесь готова.
Подобное соответствие используемых материалов и порционное замешивание позволяет достичь значительного качества и полной гидроизоляции конструкции.
Правила применения
Кроме соблюдения пропорций при замесе, требуется знать необходимые требования применения и изучение инструкции по применению жидкого стекла. Правила такие:
- Недопустимо дополнение силикатом натрия готового замеса. Для начала приготавливается сухая смесь цемента с песком, затем она разводится постепенным прибавлением раствора воды с силикатом. Соблюдается постоянное размешивание.
- Регулярно выполнять руководство, придерживаться пропорций элементов. Например, для фундамента достаточно 3% содержания клеящего состава, при иных применениях процент повышается до 10.
- При быстром застывании раствора в емкости, допускается добавление малого количества чистой воды. Если не хватает времени на использование готовой смеси, то следует прибегнуть к замесу малого количества пропорций. Поэтому при применении ЖС, не следует использовать бетономешалку, так как по ней смесь растечется и быстро застынет.
Рекомендуем посмотреть видео-инструкцию:
Техника безопасности
Применение такого средства для приготовления замеса не доставляет особых хлопот, но такая работа требует соблюдения техники безопасности.
Силикат натрия не содержит токсических соединений и безвреден для организма, но при попадании на открытые участки кожного покрова приводит к раздражению. Также при разбрызгивании средство попадает на слизистую оболочку глаза либо верхних дыхательных путей, что тоже приводит к их раздражению, в худших случаях, к ожогу.
Поэтому работу следует проводить в перчатках, халате, с маской на лице. Такие средства защиты помогут предотвратить не желаемые последствия для организма.
Если попадание произошло, то следует немедленно промыть слизистые и покров большим количеством воды. Кожные покровы после промывки смазываются кремом либо мазью без содержания активных компонентов. При необходимости обратиться к врачу.
В заключение
Зная, как правильно применять жидкое стекло при приготовлении бетонного состава, возможно, провести качественную работу по возведению прочной, влагостойкой конструкции.
Использовали материал при работе? Оставьте комментарий и поделитесь статьей в соцсетях.
Как правильно смешать цемент с жидким стеклом
Жидкое стекло в бетоне – за и против
Так же, как и все строительные материалы, добавка имеет свои достоинства и недостатки.
Что дает при добавлении в бетон жидкое стекло
Преимущества присадки:
- небольшая цена стройматериала;
- незначительный расход присадки;
- устойчивость к атмосферным факторам;
- долговечность защитной пленки;
- простота применения при введении внутрь бетона и поверхностном нанесении;
- хорошая адгезия с минеральными основами.
Кроме того, силикатный компонент обладает:
- повышенными гидрофобизирующими свойствами. В результате создания водонепроницаемого слоя затрудняется впитывание влаги;
- высокими антисептическими характеристиками. Добавка препятствует развитию бактерий, затрудняет рост микроорганизмов;
- антистатическими свойствами. Характеристики силикатной присадки препятствуют накоплению статического электричества;
- способностью герметизировать трещины на поверхности. Это обеспечивает влагонепроницаемость массива;
- устойчивостью к воздействию открытого огня, кислот, повышенной температуры. Обработанный материал сохраняет структуру и свойства.
Наряду с достоинствами, имеются слабые стороны:
- ускоренная кристаллизация модифицированного состава при выполнении мероприятий по гидроизоляции фундаментных оснований;
- невозможность применения для обработки поверхностей зданий, изготовленных из кирпича;
- недостаточно высокие прочностные свойства защитной пленки, которая разрушается при механическом воздействии.
Среди изоляционных материалов выделяется жидкое стекло для бетона
Правила применения
Жидкое стекло не добавляют в бетон.
Процесс подготовки раствора не сложен, бетонный раствор с жидким стеклом легко приготовить своими руками
Для получения качественного продукта важно соблюдать правильные пропорции компонентов смеси и знать определенные условия использования, чтобы бетон не растрескивался и не разбивался. Правила следующие:
Жидкое стекло в бетон не добавляется
Сначала готовится сухая смесь, которая разводится тонкой струйкой растворенного в воде клея, при постоянном перемешивании.
Важно строго соответствовать инструкции, соблюдать пропорции компонентов. 3% — составляющая силикатного клея в растворе для фундамента, в других случаях максимальный процент нахождения клея в составе может достигать 25, от общей массы.
Жидкий клей способствует быстрому затвердеванию раствора
Добавление незначительного количества воды, либо подготовка малых порций поможет в работе. Готовить смесь в бетономешалке бессмысленно, она схватится до окончания перемешивания.
Соотношение материалов
Уровень водостойкости напрямую связан с тем, сколько добавлять жидкого стекла в бетон. От этого показателя зависит также скорость процесса застывания
При приготовлении смеси нужно принять во внимание следующие данные:
Количество клея (%) | Первоначальное схватывание (мин) | Конечный результат (час) |
2 | 40-45 | 24 |
5 | 25–30 | 16 |
8 | 15 | 6–8 |
10 | 5 | 4 |
Хотим обратить ва
Жидкое стекло и цемент: пропорции раствора и особенности
Жидкое стекло используется как добавка в различные строительные смеси. Основное предназначение – создание поверхностного защитного покрытия, оно предотвращает проникновение влаги и улучшает декоративные качества материала. Жидкое стекло и цемент в соответствующей пропорции придают полезные свойства готовому материалу: антисептические, кислотоупорные, гидрофобные и огнезащитные качества.
Особенности жидкого стекла
Применение раствора жидкого стекла обусловлено составом материала, в его основе используется силикат натрия – это вещество без цвета, которое устойчиво к проникновению влаги. В дорогих составах применяется силикат калия, он обладает повышенными техническими характеристиками и склонен к формированию поверхностной плёнки. Для получения основных компонентов на предприятиях сплавляют соду, или поташ с кремниевым диоксидом. Без примесей материал абсолютно бесцветный, или имеет вид белых кристаллов.
Применение силикатного стекла в строительных растворах актуально в виде силикатных жидких смесей, которые относительно густые и вязкие. Затвердение состава происходит при контакте с углекислым газом, которого много в воздухе. В процессе застывания появляются аморфные гидратированные оксиды кремния.
Широко распространено добавление жидкого стекла в цементные составы при выполнении строительных работ
Цемент и жидкое стекло совместно используются для обеспечения устойчивости к кислотным и механическим воздействиям. Штукатурка с указанной добавкой обеспечит создание гидрофобного покрытия. Особый вид стекла применяется для обработки поверхностей из дерева и бетона, его часто добавляют в краски. Цемент с силикатом разводятся в различных пропорциях в зависимости от необходимости водонепроницаемости покрытия, обычно в диапазоне 2-10% от общей массы.
Плюсы и минусы использования жидкого стекла
Добавление силикатного стекла в раствор приводит к повышению его технических и эксплуатационных характеристик.
Среди основных плюсов:
- повышенная текучесть состава. Благодаря текучести продукта, он способен к проникновению в мельчайшие трещины для создания надёжной поверхностной защиты. Равномерное распределение состава происходит при нанесении как на бетон, так и дерево;
- формирует качественную, водонепроницаемую плёнку. Смесь жидкого стекла с цементом может наноситься любым удобным способом, не зависимо от метода использования, плёнка будет целостной и сплошной. Производителем разрешено наносить стекло и цемент с большим перерывом;
- небольшой расход. Этот раствор используют для закрытия трещины любого размера не зависимо от способа нанесения. Силикат с цементом можно смешивать хоть на этапе приготовления бетона, хоть для поверхностного покрытия в составе изоляционного материала;
Использование жидкого стекла при приготовлении строительных смесей на цементной основе является распространенной практикой
- низкая стоимость. Цемент – это относительно дешёвый материал из-за доступности ингредиентов, ранее уже рассматривали, из чего делают цемент. Благодаря большому количеству природного материала, изготовление силикатного материала относится к недорогим процедурам. При низкой себестоимости стекло отличается качественной гидроизоляцией, по показателю водонепроницаемости не уступает остальным изоляционным покрытиям.
Средство является лидером по качеству и цене в своей сфере. В сравнении с другими материалами этот используется чаще из-за доступности и лёгкости нанесения, но у него есть недостатки.
К негативным сторонам относятся:
- ограниченное применение в строительных растворах. Помимо обработки бетона и дерева, его негде применять в строительстве;
- не используется как самостоятельное вещество. Применяется исключительно в совокупности с дополнительными веществами. Проблема кроется в хрупкости покрытия после застывания;
- сложность нанесения является относительно высокой, так как сделать раствор пригодным следует достаточно быстро. Важно иметь глубокие знания о тонкостях материала. Главная особенность – быстрое высыхание, состав готовят небольшими порциями, схватившийся материал становится непригодным к использованию. Важно понимать, сколько добавлять жидкого стекла в раствор, при превышении концентрации ухудшается качество бетона. Состав рекомендуется к использованию в течение 6 минут.
Использовать материал можно самостоятельно, а для улучшения результата можно внести пластификатор. Чтобы избежать перерасхода материала, лучше его приготовлять в малых количествах.
На практике — не рекомендуется вводить более 5 % жидкого силикатного стекла
Пропорции компонентов при использовании жидкого стекла
Преимущественно разводят силикатный состав, его развести относительно просто – добавить воду, вспомогательные компоненты и перемешать с цементом. Стоит учитывать, что в составе самого стекла уже содержится небольшое количество воды. Для строительства приготовляется состав из цемента, песка, стекла, также желательно вносить пластификаторы.
Технология приготовления раствора для гидроизоляции своими руками
На этапе подготовки необходимо иметь жидкое стекло в количестве достаточном для добавления в раствор и нанесения слоем до 3 мм. Цементный раствор с жидкостью чаще смешивается исходя из соотношения 10 к 1. Для использования в качестве гидроизоляции подобной концентрации будет достаточно. При использовании соотношения жидкого стекла с цементным раствором в массовом эквиваленте, важно учитывать значение плотности состава.
Масса в зависимости от плотности:
- стекло – 1,5 кг/л;
- смесь песка с цементом (1 к 4) – 2,6-2,7 кг/л;
- бетон– 2,2-2,5 кг/л, для лёгких бетонов вес отличается;
- песок кварцевого типа – 1,5-1,7 кг/л, в форме насыпи – 1,5 кг/л, а слежавшийся – 1,7 кг/л.
Эта добавка в большом количестве приводит к ухудшению прочностных характеристик цементного раствора
При соблюдении пропорции силиката в бетоне увеличиваются гидроизоляционные характеристики состава, что особенно важно для поверхностей, контактирующих с землёй и водой. Для придания прочности бетонам рекомендуется добавление силиката не только в раствор, но и использование в качестве наружного покрытия.
Материал широко используется для гидроизоляции колодца, стен зданий во влажных регионах и сооружений гидротехнического назначения. В отношении колодца и подобных строений рекомендуется использовать песок мелкой фракции с цементом в равных пропорциях. До нанесения выполняется главная подготовка – обработка поверхности силикатом.
Если поверхностная часть несущей конструкции пропитывалась раствором, не стоит дожидаться полного застывания состава. После формирования бетона поверхность, обработанная силикатом, покрывается плёнкой, которая ухудшает адгезию. На застывшее стекло плохо фиксируется даже грунтовка.
Повышение водонепроницаемости и жаропрочности
Раствор с жидким стеклом уменьшает пористость состава, и повышает водонепроницаемость. Бетонная конструкция и железобетонное изделие при нахождении в условиях повышенной влажности становятся уязвимыми к плесени и грибку. Благодаря антисептическому эффекту стекла, его нужно использовать в местах, контактирующих с водой, это защитит от образования плесени.
Приготовить такой состав можно лишь при добавлении небольшой концентрации раствора – 3% от общего объёма. Предпочтительно совмещать с крупнофракционными цементами. Смешивайте цемент в указанной пропорции, иначе при вымывании силикатного состава из бетона, он утратит часть прочностных характеристик и станет уязвимым к действию влаги.
Ощутимый положительный эффект при соединении жидкого стекла и цемента проявляется в усилении гидроизоляционных свойств
Добавка применяется для получения жаропрочного искусственного камня. Если подвергнуть стандартный бетон воздействию жара, около 200°С, материал начнёт разрушаться. Если внести 1 литр кварцевого раствора на 3-3,5 л цемента, повышается жаропрочность до 1000-1400°С, что применяется для закаливания декоративного камня. В процессе расчета изготовления облицовочного камня закладывается 29-34% на жидкое стекло.
Состав требуется добавлять при кладке блоков в промышленных объектах, частном строительстве: возведение каминов, дымоходов, печей.
Затвердевание
Использовать цемент с добавлением силикатов допускается в любой сфере, но особенно рекомендуется в местах с необходимостью быстрого застывания состава. Действует закономерность, чем в большем количестве применяют жидкое, тем быстрее схватывается бетон.
Конкретные примеры:
- быстро застывать будет раствор с 10% силиката. Высыхание при температуре 20°С займёт порядка 4 часов, а время схватывания наступит через 5 минут;
- если смешать с водой 2% силикатного стекла, длительность застывания увеличится до суток, а время схватывания – до 40 минут.
В основе примера используется цемент марки М400. Некоторые источники рекомендуют для повышения прочности бетона и высокого качества состава рекомендуют добавлять 25% силиката, но химические и технические характеристики подобного раствора будут снижены. Всего за сутки готовый раствор начнёт рассыпаться, а добавка жидкого стекла в концентрации выше 25% вовсе не позволит застыть составу. На основании этого мы понимаем, что превышать концентрацию 10% силикатного клея для защиты от влаги не рекомендуется.
Заключение
При расчёте фундамента калькулятором и определении количества облицовочного кирпича важно учитывать необходимость в бетоне, а также силикатах. Техника строительства бетона с водопроницаемостью приведёт к быстрому разрушению строения. Для постройки долговечного здания важно соблюдать концентрацию песка, цемента и жидкого стекла. Разведение бетона – очень серьезная процедура, её можно выполнять без предварительного согласования с заказчиком или государственными органами, но в строгом соответствии с инструкцией.
пропорции раствора с песком для гидроизоляции
Жидкое стекло является силикатным раствором, который применяют в строительных работах как вяжущее вещество. Жидкость является густой, а цветом серовата — желтая. Главным преимуществом этого раствора является то, что он стойкий к огню, а также имеет высокий уровень гидроизоляцию.
Также преимуществом является то, что жидкость имеет свойства склеивания. Благодаря жидкому стеклу бетон становится кислотоупорным. При воздействии жидкого стекла бетон быстрее твердеет и получает свойства жаростойкости.
Раствор, полученный с воды смешанной с клеем и натрием, это и есть жидкое стекло.
Существуют два вида жидкого стекла:
- калиевый,
- натриевый.
Натриевый вид жидкого стекла может сочетаться с другими составами. Также этот вид используется для обработки подвальных стен. Также этот раствор имеет широкое применение для образования гидроизоляцию фундамента.
Калиевый вид жидкого стекла хорош тем, что благодаря высокому уровню кристаллизации имеет стойкость к повреждениям. Поскольку этот вид раствора хорошо применяется для обработки пола, и стен. Поэтому этот вид идеально подходит для использования в домах, построены, которые из дерева.
В процессе приготовления бетона с жидким стеклом существуют свои правила. Требуется знать, что приготовления очень серьезная процедура и если не соблюдать правила, то это повлечет за собой уменьшение прочности постройки.
Важно знать, что в процессе приготовления бетона с жидким стеклом требуется использовать определенную дозу ингредиентов, а также соблюдать технологию смешивания.
Существует кремнеземистый бетон, который выпускает производство в готовом виде, то, есть можно сразу использовать. Приготовить такой материал в домашних условиях очень сложно. Поэтому некоторые строители пропитывают бетон жидким стеклом в домашних условиях.
Приготовить такую смесь в высоком качестве возможно, но для этого требуется соблюдать определенные правила:
- Для того чтобы получить качество изготовляемого продукта как на производстве требуется правильно распределить количество ингредиентов. На производстве, на 1 кубометр бетона предназначено 72 литра стекла. А в процессе приготовления своими руками на 10 литров бетона необходимо использовать 1 литр смеси.
- Для приготовления раствора потребуется: жидкое стекло, вода, бетонная смесь в сухом виде, и клей. Первое что требуется сделать, это размешать жидкое стекло с водой, затем разбавить клей. После того как все это было сделано требуется смешать с бетонной смесью. Полученную смесь требуется применять к использованию в течение 6 минут и не более. Спустя 6-7 минут раствор застывает, и если его не успели применить, то с него пользы уже не будет.
Жидкое стекло широко используется для гидроизоляции. Жидкое стекло наносят в два слоя, за счет этого образуется защитная пленка. Нанося на поверхность часть раствора в самые маленькие трещины и поры, заполняя их, создает защиту. За счет того, что вещество врастает в трещины, этот раствор используют в роли гидроизоляции.
Гидроизоляция фундамента с помощью жидкого стекла
Существует множество работ, в которых применяют жидкое стекло. Также жидкое стекло используется в качестве изоляции фундамента. Жидкое стекло смешивают с цементом и полученную смесь используют в целях герметизации. Такой жидкостью удобно герметизировать швы фундамента.
Именно эта смесь применяется, поскольку она имеет свойство быстро застывать, а также устраняет возможные протечки. Преимуществ жидкого стекла в качестве гидроизоляции очень много. Эта смесь с легкостью попадает внутрь основания и этим самым обеспечивает высокую водонепроницаемость. Также к преимуществам можно отнести то, что в процессе использования материала не возникнут хлопоты.
Одно из важнейших преимуществ это то, что материал не дорогой, и позволяет сэкономить на строительстве. Важно знать, что использовать этот раствор можно не на всех, а на доступных поверхностях. Эксперты советуют в процессе работы изолировать барьер другими материалами, для того чтобы сделать его прочнее, а также избежать повреждений.
Важно знать, что решив создать гидроизоляцию методом нанесения, жидкого стекла, то необходимо ознакомиться с правилами применения. Во многих случаях происходит так, что раствор застывает до того, как его нанесли на определенное место.
Перед тем как начать наносить раствор на поверхность требуется отчистить ее и накрыть пленкой. В процессе нанесения раствора на поверхность можно использовать кисть или валик. Также валиком или кистью можно обрабатывать и очищать от загрязнения поверхность.
Требуется нанести первый слой раствора, затем подождать 30-40 минут. После того как первый слой застыл поверхность его требуется обработать для нанесения второго.
Особенности жидкого стекла
Как нам известно, в любом строительном материале ценятся особенности и качества. Жидкое стекло имеет множество особенных свойств, которые необходимы и важны в использовании строительных работ. Как уже и было замечено, что этот материал широко используется в качестве гидроизоляции.
Известно, что из-за погодных условий, то есть их изменения могут негативно повлиять на фундамент. Изменение температуры, и изменения влажности.
Жидкое стекло — это материал, который имеет свойства предотвращать попадания влаги в фундамент. Попадание влаги и воздействие на фундамент негативно влияет на постройку.
Погодные условия могут негативно повлиять на фундамент, и привести к повреждениям.
Для того чтобы этого избежать советуется применять жидкое стекло поскольку именно этот материал попадает в самые мелкие зазоры и образует гидроизоляцию. в пользу возведения бассейнов жидкое стекло пользуется широкой популярностью.
Поскольку постройка бассейна имеет очень высокий уровень влажности, при возведении используется жидкое стекло для образования гидроизоляции, которая предотвращает попадание и влияние влаги.
Плюсы и минусы использования жидкого стекла
Жидкое стекло как материал для строительства имеет очень много плюсов:
- Эксперты советуют на минеральные поверхности использовать жидкое стекло. Ведь у жидкого стекла сцепление имеет очень высокий уровень. Этот материал является лидером по качеству и сцеплению.
- Также к плюсам относится то, что жидкое стекло имеет свойство образовывать барьер, который не позволяет попадать влаге внутрь фундамента. Это очень важная черта, ведь влага может стать причиной повреждения постройки.
- Также в отличие от многих других материалов в работе с жидким стеклом не возникнуть проблемы, ведь этот материал легок в использовании. Тем более материал значительно выгоднее, по сравнению с другими материалами. Этот материал используется в небольшом количестве, что позволяет сэкономить на материале.
- Также на фоне с другими подобными растворами цена на жидкое стекло является оптимальным и выгодным.
Наверно нет идеальных материалов.
В жидком стекле, как и в других материалах, есть минусы:
- Минусом этого раствора является то, что его использовать требуется только на фундаменте, поверхность которого позволяет это сделать. Обрабатывать можно только поверхности, которые являются доступными.
- Очередной минус заключается в том, что жидкое стекло требуется использовать и другие специальные материалы для улучшения и защиты слоев, которые являются гидроизоляционными.
- Еще один минус этого раствора заключается в том, что не каждый способен провести гидроизоляцию фундамента. Процесс гидроизоляции фундамента очень сложный, поскольку раствор быстро кристаллизуется. Кристаллизация раствора усложняет работу, лицо не имеющей специальных навыков может допустить ошибки, которые повлекут за собой повреждения всей постройки. Исходя из этого, мы понимаем, что для такой работы требуется профессионал.
Подготовка силикатного раствора – инструменты и расходные материалы
Эксперты советуют применять смеси, которые добавляются в жидкое стекло. Эти смеси служат тем, что при взаимодействии с воздухом они застывают и обеспечивают высокую прочность. Эти смеси имеют высокую стоимость. Чаще всего ремонтники покупают необходимые ингредиенты для приготовления подобных смесей своими руками. Для того чтобы это сделать понадобятся необходимые инструменты.
В наличии из инструментов необходимо иметь ведро, которое будет применяться для работных нужд. Также потребуется сверло для того, чтобы мешать раствор, поэтому на ней должна быть насадка шнекового вида. Также может потребоваться кисть.
Также понадобится цемент, песок, который должен быть мелко просеян, а также источник воды, например, колодец. Также, насколько нам известно, раствор очень быстро и прочно застывает, поэтому необходимо иметь специальную одежду.
Для получения нужного раствора требуется смешать воду и жидкое стекло. Пропорции воды и жидкого стекла зависит от того на какой вид работы будет использоваться раствор. В процессе смешивания советуется использовать холодную воду, поскольку это облегчит контролирование количества.
Пропорции компонентов при использовании жидкого стекла
Силикатный раствор, который продается в магазинах, имеет малое количество воды, что делает его излишне густым. Многие строители силикатный раствор приготавливают своими руками в домашних условиях. Приготовляя подобный раствор, строители смешивали обычные компоненты и купленные.
В процессе смешивания строители регулируют дозу добавляемой воды. Для каждого вида работы готовится раствор с определенными дозами продуктов. Например для приготовления раствора, который будет применен, в строительных работах должен содержать цемент, песок, и другие составы.
Главное для каждого вида работы правильно выбирать количество воды, ведь бывают случаи, когда нужен густой раствор. Но также бывают случаи, в которых он должен быть жидким, все зависит от вида работы.
Жидкое стекло и цемент. Пропорции
Для того чтобы произвести смешивания необходимо знать точные пропорции материала. Для приготовления раствора для поверхности из грунта необходимо использовать цемент и жидкое стекло. Для этого требуется вода и цемент их необходимо мешать и регулярно добавлять жидкое стекло.
Для приготовления раствора, который будет применяться как для наружных работ или защиты от огня применяют 4 части песка. Требуется, чтобы жидкое стекло занимало 1,5 часть. Цемент также должен занимать 1,5 части. Воду добавлять такого же количества, как и для приготовления раствора для грунтовой поверхности.
Также чтобы приготовить раствор для осуществления гидроизоляции необходимо иметь жидкое стекло количеством 1 литр, и раствор из цемента 8 литров. Для того чтобы сделать гидроизоляцию в подвале или колодце, то требуется такое же количество, но только нужно использовать еще и песок. Эксперты советуют перед нанесением раствора на поверхность намазать на нее жидкое стекло.
Для того чтобы приготовить раствор для наполнения трещин необходимо взять 3 доли песка, и по 1 доле цемента и песка. Все это требуется смешать с водой в количестве 25 % от веса силиката натрия. Затем в смесь требуется вливать жидкое стекло равномерно помешивая.
Пропорции. Цемент — песок — жидкое стекло
В применении песка для добавления в жидкое стекло необходимо знать нужные пропорции. Для каждого вида работы существуют определенные пропорции. Например, для приготовления смесь, которая будет использоваться, в целях защиты от огня требуется песок количеством в 1 кг.
Если раствор нужен для работы, которая заключается гидроизоляции колодца, то необходимо использовать жидкое стекло и песок равным количеством. После того как раствор был приготовлен его необходимо нанести на стены колодца.
Для приготовления раствора, который будет применяться для обмазки снаружи, и служить защитой от огня потребуется песок. Количество песка должен занимать 1 часть от всего раствора.
Технология приготовления раствора для гидроизоляции своими руками
Многие строители и ремонтники раствор для гидроизоляции приготавливают своими руками. Процедура приготовления этого раствора несложная и довольно выгодная.
Для приготовления раствора необходимо иметь:
- жидкое стекло,
- бетонный раствор,
- песчаный раствор,
- кварцевый песок.
Каждый из перечисленных материалов требует свои дозы:
- Количество жидкого стекла должно составлять 1,5 кг на 1 литр.
- Бетонный раствор должен составлять 2,5 кг на 1 литр.
- Песчаный раствор должен составлять 2,7 кг на 1 литр.
- Кварцевый раствор применяется для слежавшегося и рыхлого песка.
- Количество такого раствора для слежавшегося песка должно составлять 1,7 кг на 1 литр.
- Для рыхлого песка понадобится количество раствора 1,5 кг на 1 литр.
Смесь, которую получили, применяют как для изоляции полов, так и для стен. Эксперты советуют, что перед нанесением раствора на поверхность ее требуется залить слоем жидкого стекла. Заливка дополнительного слоя перед нанесением дает увеличение прочности гидроизоляции.
Красящие работы
Силикатные краски можно купить уже в готовом виде и применять сразу. Но также можно смешивать своими руками купив нужные компоненты. В случае если поверхность уже красили, то необходимо ее тщательно отчистить от старой краски.
За счет того, что в создание таких красок применяют силикат калия сама смесь и краска образуют прочную структуру. За счет того, что цветовая гамма имеет высокий уровень щелочности, многие пигменты разрушаются. Поэтому цветовая гамма имеет низкий уровень.
Наружные работы
Известно, что в наружную работу входит штукатурка стен. Штукатурка стен применяется для защиты от влаги. Для стен применяется водостойкая штукатурка.
Также преимуществом этой штукатурки является то, что она предотвращает трещины, которые появляются во время зимнего периода, ведь в это время стены замерзают, и оттаивают.
Также эту штукатурку можно приготовить своими руками для этого понадобится: песок, цемент и жидкое стекло.
Все эти материалы требуется добавлять по пропорции 1:2:5. Перед тем как наносить штукатурку можно нанести один слой силиката, как и при создании гидроизоляции.
Грунтование
Как правило, грунтование применяется для двух видов работы для простой стяжки и для кладки плитки. Для простого грунтования стяжки необходимо использовать жидкое стекло и цемент по равномерному количеству. Если на стяжки будет ложиться плитка, то требуется провести грунтование с раствором жидкого стекла.
Для подобных работ требуется водостойкий цемент. Также кроме водостойкого цемента можно применять силикатные растворы, и за счет них проводить гидроизоляцию швов.
Пропитка поверхностей
Проводить пропитку необходимо для защиты материала. Пропитка деревянных элементов жидким стеклом пользуется популярностью. Жидкое стекло способно предотвратить появления грибов и плесени на дереве. Также пропитка дерева жидким стеклом предает ему огнестойкость.
Также деревянный материал можно пропитывать, полностью опустив его в жидкое стекло, это придает прочность. Такая процедура возможна только для материалов малого габарита.
Как пользоваться жидким стеклом при ремонтных работах – замазке трещин, щелей и пустот?
Для замазки трещин и пустот жидкое стекло идеально подходит. Ведь жидкое стекло способно проникнуть в саму глубь трещин, образуя плотную гидроизоляцию.
Для смешивания требуется использовать цемент жидкое стекло и песок. Полученный раствор является очень густым, что не дает ему вытекать. Также за счет силиката раствор очень быстро застывает прочно схватывая.
Методы дозирования цемента, песка и заполнителей в бетоне
Дозирование бетона — это процесс выбора количества цемента, песка, крупного заполнителя и воды в бетоне для получения желаемой прочности и качества .
Пропорции крупнозернистого заполнителя, цемента и воды должны быть такими, чтобы полученный бетон имел следующие свойства:
- Свежий бетон должен обладать достаточной удобоукладываемостью, чтобы его можно было экономно укладывать в опалубку.
- Бетон должен обладать максимальной плотностью, другими словами, он должен быть самым прочным и наиболее водонепроницаемым.
- Стоимость материалов и рабочей силы, необходимых для формирования бетона, должна быть минимальной.
Определение пропорций цемента, заполнителей и воды для получения необходимой прочности должно производиться следующим образом:
a) При проектировании бетонной смеси такой бетон должен называться бетоном для расчетной смеси, или
b) При использовании номинальной смеси такой бетон будет называться бетоном с номинальной смесью.
- Бетонная смесь для расчетной смеси предпочтительнее номинальной.
- Бетон каждой марки следует анализировать отдельно для определения его стандартного отклонения.
Стандартное отклонение
Где,
= отклонение индивидуальной испытательной прочности от средней прочности n образцов.
n = Количество результатов выборочного теста.
Методы дозирования бетона
Произвольный метод дозирования бетона
Общее выражение для пропорций цемента, песка и крупного заполнителя — 1: n: 2n по объему.
1: 1: 2 и 1: 1,2: 2,4 для очень высокой прочности.
1: 1.5: 3 и 1: 2: 4 для нормальной работы.
1: 3: 6 и 1: 4: 8 для фундаментов и массовых бетонных работ.
Рекомендуемые смеси бетона
Бетон по стандарту IS 456: 2000, марки бетона ниже М20 не должны использоваться в работах по ПКК.
M10 | 1: 3: 6 |
M15 | 1: 2: 4 |
M20 | 1: 1.5: 3 |
M25 | 1: 1: 2 |
Метод дозирования бетона по модулю дисперсности
Термин «модуль тонкости» используется для обозначения порядкового номера, который примерно пропорционален среднему размеру частицы во всем количестве агрегатов.
Модуль крупности получается путем сложения процентного содержания материала, оставшегося на следующем сите, и деленного на 100.
Чем крупнее заполнители, тем выше модуль крупности.
Сито принято для:
Все агрегаты: 80 мм, 40 мм, 20 мм, 10 мм и №№ 480, 240, 120, 60, 30 и 15.
Крупные заполнители: мм, 40 мм, 20 мм, 10 мм и № 480.
Мелкие заполнители: №№ 480, 240, 120, 60, 30 и 15.
Массовая доля мелкого заполнителя и комбинированного заполнителя
Где, P = желаемый модуль дисперсности для бетонной смеси из мелких и крупных заполнителей.
= модуль крупности мелкого заполнителя
= модуль крупности крупнозернистого заполнителя.
Метод минимальных пустот
(Не дает удовлетворительного результата)
Количество используемого песка должно быть таким, чтобы он полностью заполнял пустоты крупного заполнителя. Точно так же количество используемого цемента показано таким образом, чтобы он заполнял пустоты из песка, так что получается плотная смесь с минимумом пустот.
На практике количество мелкого заполнителя, используемого в смеси, примерно на 10% больше, чем пустот в крупном заполнителе, а количество цемента остается примерно на 15% больше, чем количество пустот в мелком заполнителе.
Метод максимальной плотности:
(не очень популярный)
Где, D = максимальный размер заполнителя (т. Е. Крупного заполнителя)
P = процент материала мельче диаметра d (по весу)
d = максимальный размер мелкого заполнителя.
Ящик заполнен мелкими и крупными заполнителями в различных пропорциях. Затем принимается пропорция, дающая наибольший вес.
Водно-цементный метод дозирования бетона
Согласно закону водоцементного отношения, данному Абрамом в результате многих экспериментов, прочность хорошо уплотненного бетона с хорошей удобоукладываемостью зависит только от этого отношения.
- При более низком содержании воды получается густая паста с более высокими связывающими свойствами, и, следовательно, снижение водоцементного отношения в определенных пределах приводит к увеличению прочности.
- Аналогично, более высокое содержание воды увеличивает удобоукладываемость, но снижает прочность бетона.
- Оптимальное водоцементное соотношение для бетона с требуемой прочностью на сжатие определяется на основе графиков и выражений, полученных в результате различных экспериментов.
- Количество воды меньше оптимального снижает прочность, и меньше примерно на 10% может быть недостаточно для обеспечения полного схватывания цемента.Увеличение на 10% выше оптимального может снизить прочность примерно на 15%, а увеличение на 50% может снизить прочность до половины.
- В соответствии с законом Абрама о воде и цементе , меньшее водоцементное соотношение в пригодной для использования смеси будет большей прочностью.
- Если водоцементное соотношение меньше 0,4–0,5, полная гидратация не будет обеспечена.
Некоторые практические значения водоцементного отношения для железобетона конструкции
- 0.45 для бетона 1: 1: 2
- 0,5 для бетона 1: 1,5: 3
- от 0,5 до 0,6 для бетона 1: 2: 4.
Бетон, вибрирующий с помощью эффективных механических вибраторов, требует меньшего водоцементного отношения и, следовательно, имеет большую прочность.
Thumb Rules для определения количества воды в бетоне:
(i) Вес воды = 28% веса цемента + 4% веса всего заполнителя
(ii) Вес воды = 30% веса цемента + 5% веса всего заполнителя
.
Влияние размера частиц и цементной замены порошка ЖК-стекла в бетоне
Высококачественный жидкокристаллический дисплей (ЖК-дисплей), обрабатывающий отходы стекла (LPWG), образующийся в процессе производства ЖК-производств Кореи, с самым высоким в мире технологическим уровнем и производством был тонко измельчен до частиц меньшего размера, чем частицы цемента (более высокой степени измельчения, чем у OPC), чтобы проверить их применимость и эффективность в качестве замены цемента. Для бетонной смеси с отношением W / B 0.44, цемент был заменен стеклянным порошком LPWG (LGP) в соотношении 5, 10, 15 и 20% (LGP12) и 5 и 10% (LGP5) в зависимости от размера частиц для подготовки образцов испытательного цилиндра, которые были испытаны с относительно содержания воздуха, осадки в свежем бетоне, прочности на сжатие и прочности на разрыв затвердевшего бетона. Микроструктура конкретных образцов была проанализирована с помощью сканирующей электронной микроскопии (SEM), энергодисперсионного рентгеновского излучения (EDX) и ртутной порометрии (MIP).Замена цемента на цемент LGP может эффективно уменьшить количество используемого цемента из-за отличных характеристик LGP. Это может внести положительный вклад в устойчивое развитие цементной промышленности, а также в переработку отходов и сохранение окружающей среды в национальном масштабе.
1. Введение
Технология бетона и цемента 21 века требует различных функций, долговечности и стабильности качества для достижения устойчивости, экологичности, высокой производительности, высокой прочности и экономической целесообразности.В соответствии с этими требованиями многие исследователи приложили усилия, чтобы сократить использование цемента и максимизировать производительность [1–4]. В частности, отходы стекла для жидкокристаллических дисплеев (ЖКД) производятся в больших количествах благодаря развитию индустрии дисплеев. Доля международного рынка дисплеев составила 39,2% в Корее, 27,4% на Тайване, 15,5% в Китае и 17,9% в других странах в 2015 году. Инвестиции Кореи в промышленность ЖК-дисплеев достигают 27 миллиардов долларов США в год, а производство в Корея — 480 000 панелей в месяц (8-е поколение, 50 дюймов), что является самым высоким показателем в мире.На основе производства мобильных устройств, таких как смартфоны и планшетные ПК, и будущего спроса, производство ЖК-дисплеев будет постоянно расти. Соответственно, количество отходов ЖКД увеличилось с начала 2000-х годов и достигло 2 миллионов панелей или более в 2015 году, а вес ежегодно образующихся ЖК-дисплеев составляет около 460 000 тонн [5]. Поскольку большая часть отходов ЖКД сжигается или закапывается, они расходуют ресурсы и вызывают различные типы загрязнения окружающей среды в национальном масштабе [6].
Стеклянные отходы ЖКД подразделяются на три категории: (1) стеклобой ЖКД, (2) отработанное стекло ЖКД, (LPWG) и (3) отработанное стекло ЖКД с истекшим сроком службы (EOL).LPWG, используемый в этом исследовании, представляет собой отходы стекла, образующиеся у производителей ЖК-дисплеев из-за дефектов обработки, резки или соединения в процессе производства ЖК-дисплеев. Такие элементы, как Cu, Mn, Mo и Fe, могут присутствовать на уровне частей на миллион на поверхности стекла из-за химической обработки в процессе производства. ЖК-продукты, содержащие эти элементы, не могут быть переработаны из-за ухудшения качества продукта, которое происходит во время переплавки, и поэтому они сжигаются или закапываются. Около 40 000 тонн LPWG в 2015 году, которые являются неизбежными отходами в процессе производства ЖК-дисплеев, образуется каждый год, и количество образовавшегося LPWG зависит от размера рынка ЖК-дисплеев [7].
Исследования отработанного стекла в качестве заменителя цемента были проведены с использованием натриево-известкового стекла, которое может вызывать расширение или растрескивание в результате реакции щелочей (Na и K), которые в значительных количествах содержатся в известково-натриевом стекле, с кремнеземом (SiO 2 ) [8]. При использовании материала для замены цемента очень важно учитывать щелочно-кремнеземную реакцию. Однако следует также принимать во внимание зависимость реакционной способности стекла от типа, компонентов и физических свойств [9].В частности, измельченный стеклянный порошок, как пуццолановый материал, имеет эффект снижения реакции щелочного агрегата (AAR) и ингибирования реакции щелочного металла и кремнезема (ASR) в пасте [10, 11]. ЖК-дисплей, используемый в этом исследовании, может быть надлежащим образом использован в качестве материала для замены цемента, поскольку ЖК-дисплей не содержит щелочей (особенно Na) из-за предполагаемого использования ЖК-продукта и имеет постоянное качество материала [12, 13]. Кроме того, ЖК-дисплей содержит SiO 2 в качестве основного компонента, который аналогичен дыму кремнезема (SF), летучей золе (FA) и доменному шлаку (BS), которые обеспечивают улучшенную пуццолановую реактивность [14, 15].Многие исследователи недавно исследовали ЖК-дисплей из-за этих преимуществ. В частности, многие отчеты были опубликованы на Тайване, который занимает второе место на рынке ЖК-дисплеев в мире. Большинство исследований, проведенных на Тайване, было сосредоточено на методах замены ЖК-дисплеев в целом. Исследования по использованию ЖК-дисплея в качестве материала, заменяющего цемент, еще недостаточно проведены [16–20]. В этом исследовании LPWG, образующийся в процессе производства стекла для ЖК-дисплеев, был исследован экспериментально с целью улучшения свойств и производительности в качестве материала, заменяющего цемент, или в качестве связующего для бетона.
2. Материалы и методы
2.1. Материалы
Цемент соответствовал обычному портландцементу KS L 5201. Физические свойства цемента показаны в таблице 1. В качестве мелкозернистого заполнителя использовали стандартный песок. Заполнитель имеет номинальный максимальный размер 20 мм (), который использовался как крупный заполнитель. Физические свойства агрегатов показаны в таблице 2. Порошок LPWG (LGP) был предоставлен Inno Co. Ltd. в Корее. Используется только чистое стекло, не содержащее щелочи, например 0.4 ~ 1,1 мм средняя толщина пленки и другие химические составы не указаны. Кроме того, в этом исследовании использовались два разных типа LGP в зависимости от среднего диаметра и крупности. Его измельчали отдельно с помощью шаровой мельницы, чтобы различить разброс двух диаметров; его плотность 2,79.
|
|
2.2. Образцы и параметры испытаний
Бетономешалка была использована для изготовления цилиндрических образцов, таких как таблица 3. После завершения сухого перемешивания в бетонную смесь были добавлены добавки и вода.Два типа LGP были основаны на соотношении W / B 0,44. Его заменяли каждые 5% на OPC по массе до 20% (LGP12), например 5%, 10%, 15% и 20%, для эффективного и действенного использования в качестве замены цемента [4, 16, 20]. Кроме того, было изготовлено в общей сложности семь типов образцов, в том числе два разных типа образцов, которые были заменены LGP с высокой степенью измельчения (LGP5), например 5% и 10%. Добавляли понижающую воду добавку (суперпластификатор, SP) на основе поликарбоксилата (Dongnam Ltd. Co. FlowMix 3000S, удельный вес:, pH:) в количестве 1% для обеспечения высокой прочности и улучшения удобоукладываемости бетона.Образцы соответствовали техническим условиям KS F 2403, по которым были изготовлены цилиндрические образцы бетона размером 100 × 200 мм, которые отверждались в течение 24 часов в форме. После этого образцы выдерживали во влажной камере для отверждения (° C, относительная влажность 100%) в течение каждого необходимого периода, например 3, 7, 14 и 28 дней.
|
2.3. Методы анализа
Образцы бетона LGP, включая бетон OPC, были выполнены после испытания свежего и затвердевшего бетона. Испытания, примененные в данном исследовании для изучения свойств бетона, содержащего LGP в качестве заменителя цемента, показаны в Таблице 4.
|
(1 ) Испытание на содержание воздуха в свежем бетоне методом давления .Стальной измерительный сосуд имел вместимость 7 л и минимальный диаметр, равный 0,75–1,25 высоты цилиндрической формы. Рабочее давление от 7,5 до 30,0 фунтов на квадратный дюйм (от 51 до 207 кПа) использовалось удовлетворительно.
(2) Испытание на оседание бетона . В этом испытании использовалась следующая форма оболочки формы: верхняя часть диаметром 100 мм; основание диаметром 200 мм; высота 300 мм; и толщиной 1,5 мм. После того, как форма была немедленно снята с бетона путем ее подъема, мы измерили ее высоту в сложенном состоянии.
(3) Испытание бетона на сжатие . Образцы были изготовлены в соответствии с KS F 2403 и измерены с помощью постоянной нагрузки добавленной силы (МПа / с) до тех пор, пока образцы не разваливаются из прибора для испытания на сжатие. Было проведено 7 видов проб на 3, 7, 14 и 28 дней.
(4) Испытание прочности бетона на растяжение при раскалывании . Образцы были изготовлены в соответствии с KS F 2403 и измерены при постоянной нагрузке добавленной силы (МПа / с) до тех пор, пока образцы не выйдут из строя тестером UTM.За 28 дней было проведено 7 видов проб.
(5) SEM-EDX . С помощью сканирующего электронного микроскопа (SEM), который смог использовать EDX (энергодисперсионное рентгеновское излучение), мы подтвердили микроструктуру бетона LGP. Цементная паста наблюдалась в процессе гидратации, и мы анализировали состав конкретной точки на изображении. Оборудование «JSM-6500F» производства «JEOL», рассчитанное на 0,5 кВ ~ 20 кВ, 1,5 нм (15 кВ). Было проведено 7 видов проб на 3 и 28 сутки.
(6) МИП .Чтобы подтвердить размер внутренних пор и распределение пор в образцах бетона на 7 и 28 дней, они были измерены методом ртутной порометрии (MIP) после использования 24-часовой сушильной печи. Оборудование «ПОРОЗИМЕТР» производства «Micromeritics» выдерживало максимальное давление 60 000 фунтов на квадратный дюйм и диапазон размеров пор 0,003 ~ 360 мкм м.
3. Результаты и обсуждение
3.1. Характеристики LGP
LGP как заменитель цемента был разделен на два типа в зависимости от размера частиц.Высокая степень стеклования может способствовать повышению пуццолановой активности, а размер частиц является критическим параметром в отношении характеристик пуццолановой реакции [21]. Таким образом, LGP12 первого типа был приготовлен с размером частиц 12,651 мкм, мкм, что аналогично цементу, а LGP5 второго типа с размером мелких частиц 5,807 мкм мкм с размером частиц примерно в два раза меньше что цемента. Оба типа LGP содержали мелкий порошок размером менее 1 мкм мкм.На рис. 1 показано гранулометрическое распределение двух типов LGP.
LGP, использованный в эксперименте, был приготовлен с использованием шаровой мельницы для получения среднего размера частиц меньше, чем у OPC, чтобы увеличить применимость и производительность в качестве замены цемента. Хотя размер самых маленьких частиц OPC составляет примерно от 3 до 5 мкм мкм, LGP, использованный в тесте, включал некоторые частицы, имеющие размер меньше или немного больше, чем 1 мкм мкм. Другими словами, мелкодисперсный порошок LGP меньше, чем OPC, хотя структура распределения частиц LGP по размеру аналогична таковой для OPC.Меньший размер частиц LGP может помочь улучшить прочность и долговечность цементного теста в бетоне, физически или химически, поскольку LGP играет роль наполнителя или участвует в пуццолановой реакции [21]. На рисунке 2 показаны изображения цемента и двух типов LGP, полученные с помощью СЭМ. Поскольку увеличение всех изображений в 1000 раз, размер частиц можно сравнивать друг с другом. Как показано на рисунке 2, размер частиц LGP был меньше, чем у OPC, и частицы LCP были гладкими на поверхности, но шероховатыми по краям.В таблице 5 показаны химические свойства LGP и сравниваются составы с таковыми OPC. Основные химические составы LGP: SiO 2 (60,1%) и Al 2 O 3 (16,1%). LGP с низким содержанием щелочи и высоким содержанием SiO 2 может быть гидратирован большим количеством Ca (OH) 2 для усиления пуццолановой реакции.
|
3.2. Содержание воздуха
На рис. 3 показано содержание воздуха в зависимости от размера частиц LGP и степени их замещения.Общее содержание воздуха было от 1,8% до 2,4%, что ниже, чем у OPC. Сравнение содержания воздуха между LGP разных размеров показало, что содержание воздуха было выше в LGP5, чем в LGP12. Сравнение содержания воздуха в LGP с различными коэффициентами замещения показало, что содержание воздуха снижалось в LGP с коэффициентом замещения до 10%. Солиман и Тагнит-Хамоу заменили цемент мелкодисперсным стеклянным порошком (с размером частиц менее 30 мкм м) в высокопрочном бетоне (содержащем добавку СП на основе ПК) с коэффициентом замены от 10% до 50% с шагом 10% и сообщил, что содержание воздуха увеличилось на 0%, 10.52%, 7,89%, 10,53% и 23,68% соответственно [22]. Высокая удельная поверхность, неабсорбируемость и трение в зависимости от формы частиц LGP могут снизить удобоукладываемость, когда LGP заменяет цемент в бетоне. Следовательно, добавление надлежащего количества примеси (SP) может быть подходящим для обеспечения удобоукладываемости и долговечности LGP с высокой степенью измельчения.
3.3. Осадка
Испытание на оседание с LGP12, имеющим замещение 5% и 10%, было выше, чем у других количеств замещения и OPC.На рис. 4 показан результат осадки при различной замене и размере частиц LGP. Спад LGP12 с заменой 10% был выше, чем у OPC, хотя он немного уменьшился по сравнению с коэффициентом замены 5%. Этот результат указывает на улучшенную осадку, вызванную более низкой поглощающей способностью и гладкой поверхностью частиц LGP, несмотря на аналогичный размер частиц [18]. Тем не менее, спад при замене LGP12 на 15% и 20% был значительно снижен. Осадка свежего бетона зависит от шероховатости или формы материала, даже если размер частиц близок.Как показано на СЭМ-изображениях на Рисунке 2 (b), поверхность и края частицы LGP были скошенными и острыми. Влияние шероховатости поверхности привело к уменьшению осадки при замене на 15% и более. В случае LGP5 спад при замене 5% был ниже, чем спад OPC на 16%, а тенденция к уменьшению спада при коэффициенте замещения 10% или выше была аналогична таковой для LGP12. Уменьшение осадки LGP5 может быть связано с увеличением удельной площади и агрегации, потому что LGP5 добавлялся с более высокой степенью измельчения из-за того, что большая потребность в воде обычно приводит к снижению компактности [11].
3.4. Прочность на сжатие
На рис. 5 показана прочность бетона на сжатие в разные дни выдержки с LGP в зависимости от коэффициента замены для OPC. Общая прочность на сжатие бетона из LGP была высокой, вероятно, из-за водосберегающего эффекта добавленной поликарбонатной добавки (SP) и увеличения дисперсности и пластичности. Следует также учитывать влияние условий окружающей среды эксперимента (в частности, температуры отверждения, при которой средняя температура воздуха во время эксперимента превышала 38 ° C).Повышенная температура отверждения ускоряет активацию пуццолановых материалов, включая стеклянный порошок, а затем прочность на сжатие показывает, что стеклянный порошок оказывает большее влияние на активацию пуццоланового материала, чем летучая зола [23]. Прочность на сжатие образцов бетона из LGP была выше, чем у OPC, за исключением раннего возраста (3 дня). На рис. 6 показаны показатели прочности на сжатие в сравнении с OPC. Через 3 дня прочность на сжатие замены LGP12 на 15% и 20% была ниже, чем у OPC на 4.93% и 8,17% соответственно. Однако прочность на сжатие всех образцов была выше, чем у OPC через 7 дней. Прочность на сжатие была самой высокой при замене LGP (5%), независимо от размера частиц до 14 дней. Однако прочность на сжатие была самой высокой при замене LGP12 и LGP5 и составляла 10% через 14 дней. В частности, прочность на сжатие LGP5 была заметно увеличена. Это связано с тем, что пуццолановые материалы начинают серьезно участвовать в пуццолановой реакции через 3–14 дней после начала гидратации.В то время примерно от 70% до 80% алита в OPC уже вступили в реакцию [24]. Следовательно, ионы Si и Al, элюированные из LGP, могли реагировать с ионами Ca, включенными в поровый раствор, с образованием C-S-H и C-A-H, чтобы сделать плотный и более компактный. Сравнение прочности на сжатие с различными размерами частиц (LGP5 и LGP12) показало более высокую прочность на сжатие LGP5, чем LGP12, через 7 дней. Этот результат ясно показал влияние замены LGP на бетон, а также меньший размер частиц и высокую дисперсность, поскольку замена цемента может повысить не только прочность на сжатие, но и долговечность.Следовательно, активация пуццоланового материала может быть усилена путем тонкого измельчения LGP на более мелкие частицы [15, 25–27].
3.5. Прочность на растяжение при раскалывании
Прочность на растяжение при раскалывании бетона из LGP была аналогична OPC (см. Рисунок 7). Прочность на растяжение при раскалывании была увеличена по мере увеличения прочности на сжатие LGP. LGP12 5% показал наивысшую прочность на разрыв при раскалывании, 4,31 МПа, что на 83% выше, чем у OPC. Образец LGP5 10% показал самую низкую прочность на разрыв при расщеплении, 2.81 МПа, что на 19% выше, чем у OPC. Однако прочность на разрыв при расщеплении имеет тенденцию к снижению с увеличением доли заменяемого LGP. На рис. 8 показана взаимосвязь между пределом прочности при расщеплении и соотношением прочности на сжатие и долей LGP за 28 дней. Образец LGP12 5% показал самый высокий коэффициент — 7,35%. Доля OPC составила 4,36%. Макдональд сообщил о соотношении прочности при растяжении при расщеплении в диапазоне от 5,8% до 8,2% в бетоне, смешанном с дымом кремнезема, пуццолановым материалом, при том же возрасте [28].Соотношение прочности при растяжении и сжатии затвердевшего бетона зависит от свойств добавленных материалов. Результаты показали, что LGP положительно влияет на увеличение прочности при расщеплении.
3.6. Межфазная микроструктура бетона
на сканирующем электронном микроскопе Межфазная микроструктура образцов была проанализирована при разном возрасте гидратации бетона, на 3 и 28 дней, с использованием снимков, полученных с помощью сканирующего электронного микроскопа. EDX-анализ был выполнен для идентификации атомов и их весовых соотношений по изображениям SEM.СЭМ-изображение на рисунке 9 показывает микроструктуру OPC за 3 дня. OPC гидратировали обычным способом для получения гидратов C-S-H и Ca (OH) 2 , но более темные области изображения указывают на то, что в поры было включено значительное количество воды или воздуха.
На рис. 10 показано изображение 10% LGP12 с помощью SEM, а на рис. 11 показаны результаты анализа EDX для 10% LGP12. Образец LGP12 10%, показанный на рисунках 10 и 11, имел структуру цементного теста, в которой был заменен LGP, имеющий возраст материала 3 дня, как в случае образца, показанного на рисунке 9.Рисунок 10 подтверждает, что частицы LGP стабильно существовали между гидратами C-S-H (гель) и C-H (кристаллы). LGP имеет волнообразный рисунок на срезе из-за высокой твердости. Изображение частиц LGP через 3 дня показало, что значительное количество гидратов уже образовалось, но частицы LGP не были полностью вовлечены в пуццолановую реакцию. Этот результат показал, что частицы LGP, в отличие от цемента, не сразу участвовали в реакции гидратации с водой в раннем возрасте.Это указывает на то, что высокий коэффициент замены LGP в бетоне может отрицательно сказаться на прочности в раннем возрасте. На рисунке 11 показаны результаты исследования поверхностных компонентов с помощью EDX, показывающие, что он богат Si, O и имеет материальный состав, аналогичный составу исходного материала LGP.
На рисунках 12 и 13 показана микроструктура цементного теста LGP через 28 дней. Как показано на Фигуре 12, структура включала хорошо развитые гидраты и была более компактной, чем OPC, так что независимые частицы LGP не могли быть идентифицированы.Частицы LGP ассимилировались с цементным тестом и частично находились внутри гидратов. Темные области, содержащие поры, были значительно уменьшены, а увеличение гидратов C-S-H близко отражало состав гидрата в результате пуццолановой реакции. Связывание гидратов C-S-H с кажущимися частицами LGP было обнаружено в микроструктуре, что указывает на то, что пуццолановая реакция протекает легче на раздробленных краевых участках, чем на относительно гладких и устойчивых поверхностях. EDX-анализ через 7 и 28 дней показал, что соотношение C / S гидратов C-S-H изменялось со временем.Повышенное содержание кальция через 28 дней могло повлиять на улучшение прочности бетона.
3.7. MIP
Распределение пор в цементной матрице обычно зависит от количества гидратов, потому что поры распределяются гидратами, содержащимися в цементной матрице. Результаты, показанные на Рисунке 14, показывают, что пористость LGP5 с высокой степенью измельчения за 7 дней составила 18,31% для LGP5 5% и 19,23% для LGP5 10%, что было выше, чем у OPC.Тем не менее, вся пористость LGP была уменьшена, которая была меньше 7 дней, на 2,6–6%. Уменьшение пористости тесно связано с прочностью, что согласуется с результатами, описанными в разделе 3.4. Пуццолановая реакция обычно протекает медленнее, чем реакция гидратации цемента OPC. Следовательно, бетон был заменен пуццолановым материалом, показывающим высокую проницаемость в раннем возрасте, но проницаемость снижается по мере развития реакции. Поскольку капиллярная пористость связана с проницаемостью, добавление LGP может снизить проницаемость, что способствует повышению долговечности материала.
Реакция гидратации и вторичная пуццолановая реакция уменьшали капиллярную пористость во всем диапазоне размеров пор, за исключением диапазона капиллярных пор (средний размер), и уменьшали максимальный размер пор. В таблице 6 показан средний размер пор бетона LGP в зависимости от возраста выдержки. Уменьшение пор было значительным, особенно в диапазоне размеров пор от 50 до 110 нм. Учитывая гранулометрический состав LGP, уменьшение пор в этом диапазоне нельзя приписывать просто эффекту заполнения пор LGP.Скорее, поскольку цементная паста была достаточно гидратирована, полученные гидраты образовывали компактную структуру, чтобы блокировать и разделять взаимосвязанные капилляры, создавая поры, которые связаны только с порами геля. Это могло внести значительный вклад в увеличение силы [29]. В частности, пористость в диапазоне капиллярных пор (средний размер), включая поры геля от 4 до 50 нм, была выше в образце LGP на 28 дней, чем на 7 дней. Крупные поры уменьшились, но капиллярные поры размером менее 50 нм увеличились по сравнению с OPC.Это указывает на то, что заполнение частицами LGP в диапазоне капиллярных пор большого размера, а также образование гидратов в результате пуццолановой реакции могло заполнить или разделить капиллярные поры большого размера, преобразовывая взаимосвязанные поры в закрытые поры [30]. По мере увеличения замены цемента LGP, взаимосвязанные поры превращались в поры меньшего размера независимо от размера частиц. Кроме того, в диапазоне размеров пор от 50 до 200 мкм м (межфазная переходная зона, ITZ) пористость бетона LGP значительно снизилась за 28 дней.На рисунке 15 показано, что уменьшение пористости ОРС в этом диапазоне размеров пор не было значительным на 7 и 28 дней. Напротив, как показано на Фигуре 16, пористость всех LGP была значительно уменьшена в этом диапазоне размеров пор. Распределение частиц LGP5 по размеру, показанное на рисунке 1, показывает, что образец не включал частицы размером около 100 мкм мкм. Однако согласно результатам, показанным на рисунке 16, пористость образцов LGP в этом диапазоне размеров пор уменьшилась до аналогичного уровня, независимо от размера частиц.Это говорит о том, что гидраты, полученные в течение 28 дней, могли сделать поры более компактными и плотными, тем самым увеличив прочность. Распределение пор и уменьшение размера пор в ITZ были проверены с помощью теста на проницаемость для ионов хлора, проведенного с образцами бетона, полученными путем смешивания пуццолановых материалов, таких как SF, BS и FA [31]. Наиболее важными факторами были компактное уплотняющее наполнение микрочастиц и модификация процесса гидратации [32]. Это указывает на то, что смешивание бетонных материалов LGP
м.
Введение в GFRC (бетон, армированный стекловолокном)
Если вы еще не знакомы с бетоном, армированным стекловолокном (GFRC), вам следует ознакомиться. GFRC — это специализированная форма бетона, имеющая множество применений. Его можно эффективно использовать для создания фасадных стеновых панелей, облицовки каминов, умывальников и бетонных столешниц благодаря своим уникальным свойствам и прочности на разрыв. Один из лучших способов по-настоящему понять преимущества GFRC — это глубже изучить это уникальное соединение.
Что такое GFRC?
GFRC похож на рубленый стекловолокно (вид, который используется для формирования корпусов лодок и других сложных трехмерных форм), но намного слабее. Он сделан из смеси мелкого песка, цемента, полимера (обычно акрилового полимера), воды, других примесей и устойчивых к щелочам (AR) стекловолокон. В Интернете доступно множество дизайнов смесей, но вы обнаружите, что все они имеют общие черты в используемых ингредиентах и пропорциях.
Некоторые из многих преимуществ GFRC включают:
- Способность создавать легкие панели — Хотя относительная плотность аналогична плотности бетона, панели GFRC могут быть намного тоньше традиционных бетонных панелей, что делает их легче.
- Высокая прочность на сжатие, изгиб и растяжение — Высокая доза стекловолокна обеспечивает высокую прочность на разрыв, а высокое содержание полимера делает бетон гибким и устойчивым к растрескиванию. Правильное армирование с использованием холста еще больше увеличит прочность объектов и имеет решающее значение в проектах, где видимые трещины недопустимы.
GFRC прочный. Посмотрите это видео, чтобы увидеть, насколько сильным он может быть:
Волокна в GFRC — как они работают
Стекловолокно, используемое в GFRC, придает этому уникальному составу прочность.Устойчивые к щелочам волокна действуют как основной элемент, несущий растягивающую нагрузку, в то время как полимерная и бетонная матрица связывает волокна вместе и помогает передавать нагрузки от одного волокна к другому. Без волокон GFRC не обладал бы своей прочностью и был бы более склонен к поломке и растрескиванию.
Понимание сложных оптоволоконных сетей в GFRC — это отдельная тема. См. Эту статью для получения более подробной технической информации о волокнах GFRC.
Дизайн смеси GFRC
Если вы много работали с бетоном, то знаете, что подобрать правильную смесь может быть сложно и часто требует многолетнего опыта.На идеальный состав бетона влияет множество различных факторов, и GFRC не исключение. Дизайн микса не является концепцией, которую можно описать в одном сообщении в блоге, но вот некоторые из основных компонентов хорошего микса GFRC:
- Мелкозернистый песок — Песок, используемый в GFRC, должен иметь средний размер, проходящий через сито № 50 и сито № 30 (от 0,3 мм до 0,6 мм). Более мелкий песок имеет тенденцию препятствовать текучести, в то время как более крупный материал имеет тенденцию стекать с вертикальных участков и отскакивать при распылении.
- Цемент — В типичных пропорциях используются равные части по весу песка и цемента.
- Полимер — Акриловый полимер обычно предпочтительнее, чем полимеры EVA или SBR для GFRC. Акрил не смачивается повторно, поэтому после высыхания он не размягчается и не растворяется, а также не желтеет от воздействия солнечных лучей. Большинство акриловых полимеров, используемых в GFRC, имеют содержание твердых веществ от 46% до более 50%. Попробуйте попробовать Smooth-On duoMatrix-C и Forton VF-774, два надежных варианта акрилового полимера.
- Вода — Обычное отношение воды к цементу составляет от 0,3 до.35. При определении того, сколько воды использовать, обязательно учитывайте содержание воды в акриловом полимере. Это может затруднить расчет отношения воды к цементу, если не известно содержание твердых веществ в полимере. При содержании твердых частиц полимера 46% на каждые 100 фунтов цемента добавляется 15 фунтов полимера плюс 23 фунта воды.
- Стекловолокно, устойчивое к щелочам — Волокна являются важным компонентом GFRC. Если вы используете метод распыления для заливки, волокна будут автоматически обрезаны и добавлены в смесь вашим распылителем во время нанесения.Если вы используете премикс или гибридный метод литья, вы сами смешаете волокна. Содержание волокна варьируется, но обычно составляет от 5% до 7% от общего веса цемента. Более высокое содержание волокна увеличивает прочность, но снижает удобоукладываемость.
- Другие добавки — Некоторые другие элементы, которые вы можете включить в свою смесь GFRC, включают пуццоланы (например, микрокремнезем, метакаолин или VCAS) и суперпластификаторы.
Отливка GFRC
Commercial GFRC обычно использует два разных метода заливки GFRC: распыление и предварительное смешивание.Давайте быстро рассмотрим оба, а также более экономичный гибридный метод.
Распыление
Процесс нанесения GFRC-распылителя очень похож на торкретбетон в том, что жидкая бетонная смесь распыляется в формы. В этом процессе используется специализированный пистолет-распылитель для нанесения жидкой бетонной смеси, а также для одновременной резки и распыления длинных стекловолокон с непрерывной катушки. Распыление создает очень прочный GFRC из-за высокой нагрузки на волокно и большой длины волокна, но покупка оборудования может быть очень дорогой (20 000 долларов и более).
- Плюсы: Позволяет выдерживать очень высокие нагрузки на волокна с использованием длинных волокон, что обеспечивает максимально возможную прочность.
- Минусы: Требуется дорогое специализированное оборудование (обычно от 20 000 долларов).
Распыляемые волокна GFRC
Премикс
Премикс смешивает более короткие волокна с жидкой бетонной смесью, которая затем заливается в формы или распыляется. Пистолеты для распыления премикса не нуждаются в измельчителе волокна, но они все равно могут быть очень дорогими.Премикс также имеет тенденцию обладать меньшей прочностью, чем распыление, поскольку волокна короче и расположены более беспорядочно по всей смеси.
- Плюсы: Дешевле, чем распыление, хотя требуется специальный пистолет-распылитель и насос.
- Минусы: Ориентация волокон более случайна, чем при использовании распыления, и волокна короче, что снижает прочность.
Гибрид
Последний вариант создания GFRC — это использование гибридного метода, в котором используется недорогой пистолет-распылитель для нанесения лицевого покрытия и вручную набираемой или залитой смеси подложки.Тонкую поверхность без волокон (называемую туманным слоем или лицевым слоем) распыляют в формы, а затем смесь основы набивают вручную или заливают так же, как обычный бетон.
Это метод, который используют большинство производителей бетонных столешниц.
Это доступный способ начать работу, но очень важно тщательно создать как смесь для лица, так и смесь подложки, чтобы обеспечить одинаковую консистенцию и макияж, и знать, когда наносить защитное покрытие, чтобы оно должным образом приклеилось к тонкому слою тумана. но не рвет.
- Плюсы: Доступный способ начать работу с GFRC. Бункер и воздушный компрессор стоят от 400 до 500 долларов, что намного меньше, чем у пистолетов-распылителей, используемых для распыления или предварительного смешивания.
- Минусы: Поскольку лицевое покрытие и подкладочная смесь наносятся в разное время, необходимо внимательно следить за тем, чтобы смеси имели одинаковый состав, чтобы предотвратить скручивание.
Распыление аэрозольного покрытия GFRC. Волокнистый защитный слой наносится вручную.
GFRC Отверждение
Высокое содержание полимера в GFRC означает, что длительное влажное отверждение не требуется.Накройте только что отлитую деталь пластиком на ночь, но как только она наберет достаточно прочности, ее можно будет открыть и обработать. Многие изделия из стекловолокна снимаются через 16–24 часа после литья.
Обработка GFRC
Ваш уровень мастерства, состав смеси и используемый метод будут определять, сколько обработки потребуется после того, как ваша столешница из GFRC будет извлечена из форм. Заливка швов может потребоваться для заполнения ям от насекомых или дефектов поверхности. Любой обратный поток (песок и бетон, который не прилипает к формам) необходимо очистить, иначе поверхность бетона будет открытой и зернистой.Получение идеального изделия прямо из формы очень сложно и требует большого мастерства.
Общие вопросы о GFRC
- Какова толщина типичной столешницы из бетона GFRC? — Типичные бетонные столешницы, изготовленные из GFRC, имеют толщину от «до 1». Это минимальная толщина, при которой может быть изготовлена длинная плоская столешница, чтобы она не сломалась при переноске или транспортировке. Настенная плитка меньшего размера может быть намного тоньше.
- Чем отличается GFRC от традиционных столешниц из сборного железобетона? — Подробнее см. В этой статье.
- GFRC зеленый? — GFRC примерно на одном уровне с другими формами бетонных столешниц с точки зрения «экологичности». При сравнении бетонных столешниц толщиной 1,5 дюйма и столешниц из GFRC толщиной ¾ дюйма используется то же количество цемента, поскольку GFRC имеет тенденцию использовать примерно в два раза больше цемента, чем обычный бетон. Это делает их равными друг другу. Использование полимеров и необходимость их перевозки на грузовиках делают GFRC менее экологичным, чем использование обычной воды, которую можно повторно использовать в магазине.Как традиционное литье, так и GFRC могут использовать переработанные заполнители, а стальная арматура более экологична, чем стекловолокно AR, поскольку сталь является наиболее перерабатываемым материалом, поэтому ее использование в бетоне всех форм повышает экологичность бетона.
Интересные факты о GFRC
- GFRC был впервые создан в 1940-х годах в России, но только в 1970-х годах нынешняя форма получила широкое распространение для фасадов зданий.
- GFRC, как правило, стоит от 2,50 до 3,00 долларов за квадратный фут для материала толщиной дюйма.Стоимость увеличивается примерно до 3,50–3,75 доллара за квадратный фут для материала толщиной 1 дюйм с учетом цен на песок, цемент, добавки, волокна и полимер.
Дополнительное техническое обучение по GFRC
Просмотрите наш БЕСПЛАТНЫЙ 2,5-часовой семинар «Step by Step GFRC with Mix Design», запросив доступ здесь.
Посмотрите это короткое 7-минутное видео с отрывками из нашего 2-часового онлайн-видео-тренинга Professional GFRC for Concrete Countertops and More. Наблюдение за тем, как строится настоящая столешница из GFRC, поможет вам лучше понять многие темы, затронутые в этой статье.И, видя, чему вы можете научиться у Джеффа всего за 7 минут — представьте, что вы можете узнать за 2 часа!
Узнайте НАМНОГО больше о профессиональном GFRC для бетонных столешниц и многом другом.
Фотографии бетонных столешниц, мебели, раковин и прочего из GFRC
Как и обычный бетон, GFRC может содержать множество художественных украшений, включая кислотное окрашивание, окраску, интегральную пигментацию, декоративные заполнители, прожилки и многое другое. Его также можно протравить, отполировать, обработать пескоструйным аппаратом и сделать трафарет.
Если вы можете себе это представить, вы можете это сделать, что делает GFRC отличным вариантом для создания бетонных столешниц и особенно трехмерных бетонных элементов, таких как мебель, раковины, костровые ямы и многое другое.
В этом видео показано несколько примеров произведений GFRC выпускниками CCI. Вы также можете посмотреть фотографии творческого бетона, большая часть которого сделана с использованием GFRC, здесь.
.
Прочность и характеристики разрушения самоуплотняющегося бетона, содержащего переработанные стеклобойные отходы
Экспериментально исследовали влияние различных пропорций стеклобоя зеленого цвета на механические свойства и свойства разрушения самоуплотняющегося бетона (SCC). Бутылки для отходов собирали, промывали, измельчали и просеивали для приготовления стеклобоя, используемого в этом исследовании. Стеклобой вводили в различных процентах (0%, 20%, 40%, 60%, 80% и 100% по весу) вместо натурального мелкого заполнителя (NFA) и / или природного грубого заполнителя (NCA).Три серии SCC были спроектированы с постоянной осадкой в мм, общим содержанием связующего 570 кг / м 3 и при соотношении воды и связующего (вес / вес) 0,35. Кроме того, зола-унос (ТВС) использовалась в бетонных смесях в количестве 20% от общего содержания вяжущего. Механические аспекты, такие как прочность на сжатие, растяжение при расщеплении, чистая прочность на изгиб и модуль упругости SCC, были исследованы и экспериментально рассчитаны в возрасте 28 дней. Кроме того, характеристики разрушения бетона также контролировались с помощью испытания на трехточечный изгиб на балках с надрезом.Результаты показали, что на механические свойства, а также на параметры разрушения отрицательно повлияло введение стеклобоя WG. Однако максимальное снижение прочности на сжатие не превысило 43%, зафиксированных при 100% замене WG. Бетоны, содержащие WG, показали менее хрупкое поведение, чем эталонный бетон при любом содержании.
1. Введение
Турция как одна из экономически перспективных и развивающихся стран имеет хорошо отлаженные системы управления отходами с более чем 2000 разбросанных открытых свалок.В конце 2014 г. производители отвечали за сбор и переработку не менее 60% твердых отходов [1]. Однако с каждым годом количество отходов и связанных с ними проблем с удалением увеличивается из-за повышения уровня жизни, индустриализации и, следовательно, населения. Более того, из 25 миллионов тонн около 17,5 миллионов тонн было утилизировано без всякого контроля [2]. Следовательно, переработка отходов считается наиболее подходящим решением, поскольку она снижает загрязнение природы, а также помогает повторно использовать процесс производства энергии.Стеклянные отходы нежелательно утилизировать, поскольку они не поддаются биологическому разложению, что делает их менее экологически чистыми; кроме того, исчерпываются возможности полигона [3]. Таким образом, использованные отходы стекла (WG) стали серьезным бременем для свалок по всему миру. Проблема утилизации стеклянных отходов продолжает возрастать всякий раз, когда количество стеклянных отходов увеличивается и уменьшается вместимость полигона [4]. В целом, не все использованные стекла подходят для переплавки и использования для изготовления новых продуктов из-за смешанного цвета стекла и загрязнения бумагой и другими веществами [5].Следовательно, важно найти устойчивую альтернативу повторному использованию и переработке этого материала. Стекло — это уникальный инертный и идеальный материал, который можно многократно использовать без каких-либо изменений в его химических свойствах [6]. Бетонное строительство обеспечивает значительный рыночный потенциал для переработки стеклянных отходов за счет снижения стоимости бетона [3]. В последнее десятилетие рост затрат на утилизацию и законодательные нормы по охране окружающей среды побудили нескольких исследователей снова исследовать использование стекла в качестве заполнителя бетона.Следовательно, Коу и Пун [5] приготовили SCC из переработанного стекловолокна. Авторы исследовали свежие и механические свойства и обнаружили, что возможно производить SCC с стеклобоем WG до уровня замещения 30%. Афшун и Шарифи [7] также пришли к выводу, что стеклобой WG может быть успешно использован для производства SCC. Аналогичным образом Sharifi et al., 2013 [8] утверждали, что стеклобой WG в виде мелкозернистого заполнителя можно использовать для производства SCC стандартным способом. Результаты автора показали, что не было заметного снижения сильных сторон при 30% -ном коэффициенте замещения РГ и менее.Аналогичным образом Meyer et al. [9] подчеркнули, что практически возможно производить SCC с использованием полного замещающего уровня стеклобоя WG в качестве заполнителей, помимо подходящего количества летучей золы (FA) и суперпластификатора (SP). Asokan et al. [10] добавили в бетон 5–50% пластмассовых отходов, армированных стекловолокном, и проверили прочность на сжатие. Результаты показали, что прочность на сжатие варьировалась от 19 до 37 МПа для бетона, содержащего от 50 до 5%, соответственно. Кроме того, Озкан и Юксель [11] использовали различные процентные доли WG для исследования механических свойств и свойств долговечности растворов на основе цемента.Результаты показали, что снижение прочности при уровне замены 30% было допустимым, а свойства долговечности также были допустимыми.
Ожидалось, что бетон из стеклобоя WG по своим механическим и прочностным характеристикам будет уступать обычному бетону. Действительно, эти параметры в основном контролировались сцеплением между цементом и заполнителем, а также прочностью межфазной переходной зоны (ITZ). Следовательно, замена шероховатой поверхности НА на гладкую для измельченных частиц стекла обязательно приводила к падению прочности; Кроме того, для этого бетона ожидается дальнейшее снижение и без того низкой пластичности [9].В связи с этим в нескольких предыдущих публикациях [3, 5, 7, 12] подчеркивалось, что добавление стеклобоя WG отрицательно сказалось на прочности на сжатие, а также на другие механические свойства. Напротив, Sangha et al. [13] сообщили, что бетон WG показал более высокое значение прочности на сжатие по сравнению с обычным бетоном. Авторы заметили увеличение значения прочности на сжатие на 10%, 40% и 60% уровней замены зеленого стекла.
Основная проблема стеклобетона связана с щелочно-кремнеземной реакцией (ASR), которая была основной проблемой, препятствовавшей использованию стеклобоя в строительстве [4, 14–16].Химическая реакция, происходящая между большим количеством кремнезема в частицах стекла и щелочью в пористом растворе бетона, еще несколько десятилетий назад не была хорошо изучена [9]. Хотя считается, что процесс ASR вызывает объемное расширение, которое приводит к трещинам, однако эта реакция не ограничивается только агрегатами стекла. Действительно, природный заполнитель (NA), такой как деформированный кварц и опаловый кремний, содержит определенное количество кремнезема, который может вызвать ту же проблему. Кроме того, необходимы надежные методы испытаний для прогнозирования потенциальной реакционной способности НА, поскольку для проявления этой реакции требуются годы.Следовательно, стекло считается идеальным заполнителем для исследования явления ASR с целью смягчения его отрицательных результатов [17]. В связи с этим проводятся исследования по подавлению расширения ASR в бетоне и поиску методов минимизации его эффектов. Лам и др. [18] и другие [3, 6, 14] сообщили, что включение подходящих пуццолановых материалов, таких как FA, измельченный доменный шлак (GBFS) или метакаолин (MK), в бетонные смеси может предотвратить и подавить это химическое воздействие. Кроме того, Shi, 2009 [16] указал, что расширение бетона, вызванное традиционной щелочно-кремнеземной реакцией, отличалось от расширения бетона, содержащего стекловолокно.Автор подчеркивает, что бетон WG расширяется, когда присутствует влага и pH порового раствора превышает 12.
Несмотря на то, что в нескольких предыдущих публикациях исследовалось влияние стеклобоя WG (мелкого и / или крупного размера) на свойства бетона, но параметры разрушения бетона WG еще не исследованы. Более того, в большинстве проведенных исследований не только избегают использования экстремальных уровней замещения стеклобоя WG, но и тестируют только один сорт заполнителя WG (мелкий или крупный) [5, 7, 8, 19].В настоящем исследовании свойства разрушения SCC, а также прочностные характеристики были запрошены для нескольких уровней замещения заполнителя WG (мелкого и / или крупного содержания). Помимо контрольной смеси (CTR), три серии SCC были разработаны с уровнями замены WG 0%, 20%, 40%, 60%, 80% и 100% по весу NA. Постоянное соотношение вес / вес 0,35 и общее содержание связующего 570 кг / м 3 3 были применены для получения 16 смесей SCC. Более того, для подавления реакции ASR в этих бетонах использовалась FA в количестве 20% от общего содержания вяжущего.В этом исследовании прочностные характеристики бетона были проведены с точки зрения сжатия, растяжения при раскалывании, чистой прочности на изгиб и статического модуля упругости. Кроме того, параметрами разрушения, испытанными в этом исследовании, были энергия разрушения () и характерная длина (). Все вышеупомянутые тесты были выполнены через 28 дней, и результаты оценивались и сравнивались статистически.
2. Экспериментальная программа
2.1. Материалы
В этом исследовании портландцемент, используемый во всех смесях SCC, был обычным цементом под названием CEM I 42.5 R и идентичны турецким спецификациям TS EN 197 [20], которые в основном основаны на европейском EN 197-1. Более того, ТВС использовалась в бетоне в качестве материала замены по массе цемента на уровне 20%. Химические и физические характеристики цемента, FA и стекла приведены в таблице 1. Физические свойства стеклобоя и NA были определены в соответствии с ASTM C127 [21]. В связи с этим, с удельным весом 1,07 был использован SP для достижения желаемой обрабатываемости.
|
Стеклобой WG использовался на разных уровнях замещения по массе NA .В связи с этим использовался мелкий заполнитель отработанного стекла (WGFA) с размером частиц 0–4 мм и удельным весом 2,53, в то время как крупнозернистый заполнитель отработанного стекла (WGCA) использовался с размером частиц 4–11,2 мм и удельным весом 2,55 (рисунок 1). Фактически, 24-часовая абсорбционная способность WG была слишком мала, и ею можно было пренебречь. Кроме того, использовались природный крупный заполнитель (NCA) типа речного песка и природный мелкозернистый заполнитель (NFA), соответствующие TS 706 EN 12620-A1 [22]. Максимальные размеры NCA и NFA составляли 16 и 4 мм, в то время как 24-часовая абсорбционная способность составляла 0.77% и 1,09% соответственно. Более того, физическое наблюдение WG показало гладкие поверхности, угловатую форму и острый край. Физические характеристики и ситовый анализ заполнителей, использованных в данном исследовании, показаны в таблице 2.
|
2,2. Дозирование смеси и подготовка образца
В дополнение к контрольной смеси (CTR), где NA использовались как мелкие и грубые; 16 других бетонных смесей были спроектированы и произведены в тарельчатом смесителе емкостью 30 л в соответствии с ASTM C192 [23].Смеси SCC были разделены на три серии. В этих смесях NA заменяли стеклобоем WG на уровнях замещения 0%, 20%, 40%, 60, 80 и 100% от общего объема заполнителя. В серии I NFA были заменены стеклобоем WG тонкой очистки, в то время как смеси в серии II были получены путем замены NCA на WGCA. Точно так же в серии III в бетон были добавлены стеклобой марки WG как крупного, так и мелкого сорта. Таким образом, каждая серия состояла из 5 смесей в соответствии с указанными выше уровнями замещения.Все бетоны были приготовлены с содержанием вяжущего материала 3 570 кг / м3 и соотношением вес / вес 0,35. В связи с этим, а также для подавления потенциальной щелочно-кремнеземной реакции, в этих бетонах использовался FA в количестве 20% от общего содержания вяжущего. Более того, для достижения желаемой обрабатываемости использовался разный процент SP. Как показано в таблице 3, коды бетонных смесей были названы в зависимости от состава смеси. Например, FWG0CWG0 указывает, что SCC содержит 0% WGFA и 0% WGCA.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NCA: природные крупные агрегаты; NFA: природные мелкие заполнители; WGCA: стекломассы грубого помола; WGFA: мелкие стекломассы. |
Последовательность заливки бетона началась со смешивания заполнителя и / или стеклобоя со связующим в течение одной минуты до его гомогенизации.Затем воду, содержащую SP, добавляли двумя частями, чтобы избежать расслоения, и бетоны перемешивали в течение 3 минут. Позже бетон оставляли на 2 минуты для отдыха и снова перемешивали еще 2 минуты, чтобы завершить последовательность смешивания. Для всех бетонов, произведенных в этом исследовании, была определена оседающая текучесть с диаметром мм в соответствии с ограничениями EFNARC [24]. Для этого были проведены пробные партии для каждой смеси, пока не был получен целевой диаметр осадочного потока.
2.3. Методика испытаний
2.3.1. Прочность и модуль упругости
В текущем исследовании испытание прочности на сжатие проводилось в соответствии с ограничением BS 1881-116 [25]. Результаты были рассчитаны как среднее значение трех кубических образцов (мм) для каждой смеси за 28 дней. Подобно испытанию на сжатие, предел прочности при раскалывании также рассматривался как среднее значение трех цилиндрических образцов () в соответствии с ASTM C496 [26], в то время как статический модуль упругости был определен в соответствии с BSI 1881-121 [27]. В этом испытании кубические образцы (мм) использовались для оценки упругости бетона.Образец трижды подвергался 40% максимальной нагрузке, которая уже была указана в результатах испытания прочности на сжатие. Значения модуля были измерены как среднее из двух вторых наборов показаний, тогда как первый набор игнорировался для каждого куба. Однако для каждого из вышеупомянутых тестов учитывалось среднее значение не менее трех образцов.
2.3.2. Параметры разрушения
Согласно RILEM 50-FMC [28], работа, необходимая для создания одной единицы площади трещины, выражается как энергия разрушения материалов.В вяжущих материалах энергия разрушения представляет собой косвенную поверхностную энергию, которая определяется работой разрушения [29]. Преобразователь линейного переменного смещения (LVDT) в середине пролетов образцов использовался для одновременного измерения смещения. Как показано на Рисунке 2 (а), для оценки параметров трещины использовалась призма длиной 500 мм с поперечным сечением (). Для этого использовалась испытательная машина с обратной связью Instron 5500R для приложения нагрузки с максимальной нагрузкой 250 кН (рис. 2 (b)).В том же отношении обзор испытательной машины был изображен на рисунке 2 (c). Фактически, надрез высотой 40 мм делали путем распиливания образцов перед испытанием. Таким образом, отношение выемки к глубине () было принято равным 0,4. Энергия разрушения в балках с одной кромкой с надрезом была рассчитана путем измерения начальной площади связки, а также общей рассеиваемой энергии. Согласно работе разрушения (WFM) или методу Хиллерборга, энергия разрушения, может быть выражена как [30], где представляет собой общее количество WFM в испытании, в то время как ширина и начальная глубина надреза балки представлены как и, соответственно.В том же отношении RILEM [28] предложил аналогичное соотношение для описания энергии разрушения при испытании на трехточечный изгиб, принимая во внимание влияние балки с одинарной кромкой с надрезом. Уравнение можно записать в виде, где термины,,, и обозначают массу, ускорение свободного падения, заданное отклонение, пролет и длину балки соответственно. Кроме того, чистая прочность на изгиб, может быть теоретически рассчитана следующим образом с использованием образцов призмы (мм), используемых в испытании на излом: где — предельная нагрузка.
В этой связи Хиллерборг [29] описал хрупкость материала в методе WFM, используя длину зоны процесса разрушения, которая связана с параметром характеристической длины, как
.